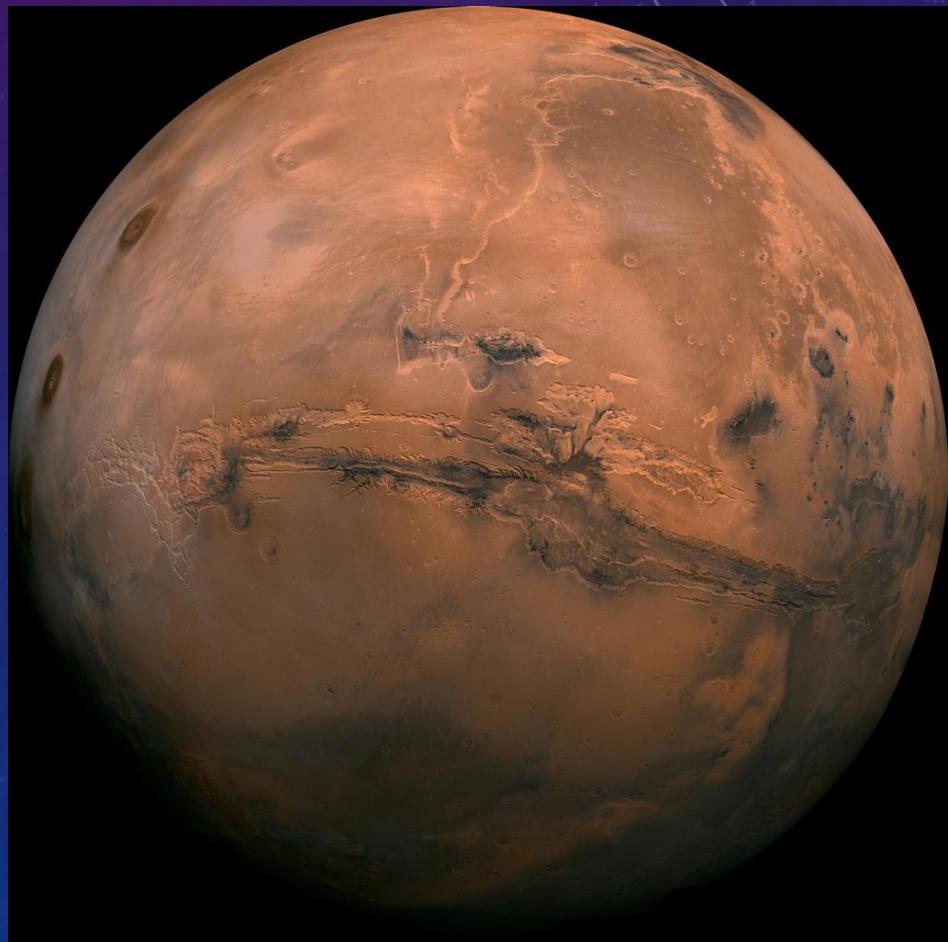


Planets, Stars, and Galaxies

Astronomy & Science

Presented by Daniel Segal

Based on the slides from Robert Wagner


What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

Image Credit: <https://mars.nasa.gov/allaboutmars/extreme/>

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

Image Credit: <https://www.nasa.gov/topics/solarsystem/features/watchtheskies/comet-lovejoy-ursa-major.html>

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

Image Credit: https://www.nasa.gov/mission_pages/hubble/science/ancient-stars.html

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

Image Credit: <https://phys.org/news/2016-01-milky-galaxy-zombie-dead-dont.html>

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

Image Credit: https://www.nasa.gov/multimedia/imagegallery/image_feature_1604.html

What Is Astronomy?

- The study of the universe and everything in it!
 - Planets & Moons
 - Asteroids & Comets
 - Stars
 - Galaxies
 - Nebulae
 - Black Holes
 - And More!

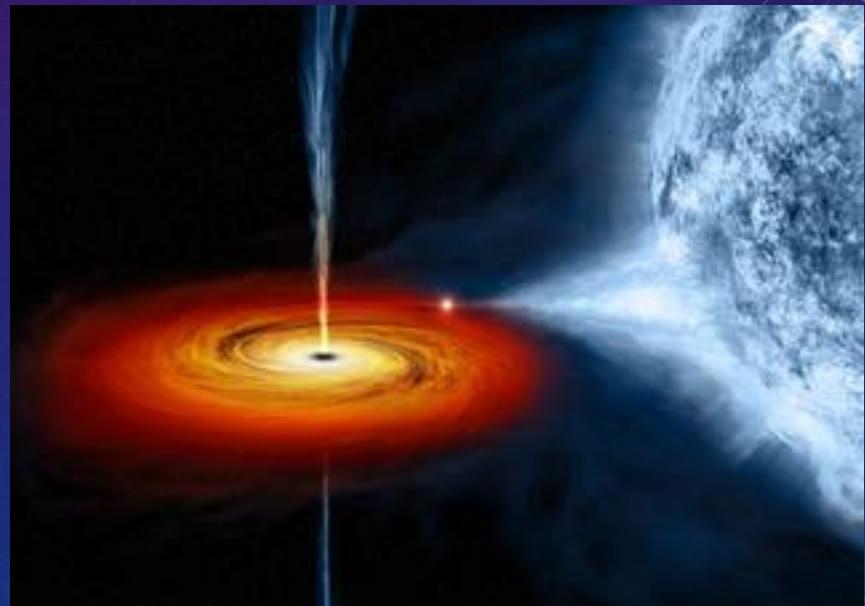
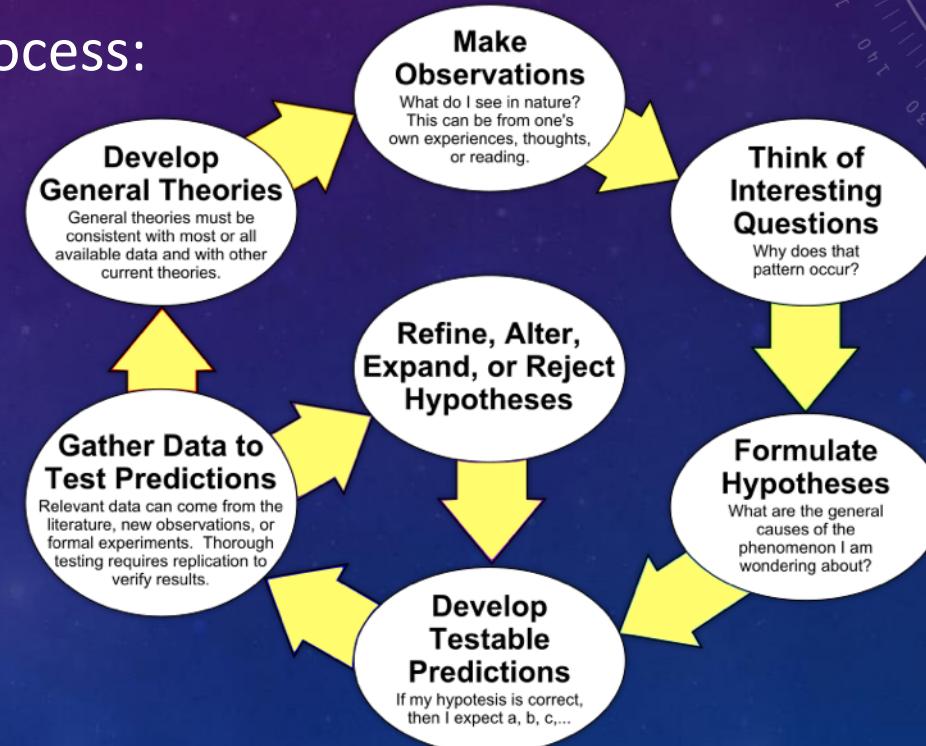


Image Credit: <https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-black-hole-58.html>

Why Study Astronomy?

- Studying astronomy (and other sciences) teaches a way of thinking
 - Critically analyze information
 - Apply to everyday situations
 - Broader understanding of the universe and our place in it

Scientific Thinking - Definition


- Theory
 - Must be testable – “The Moon is made of Green Cheese!”
 - Based on observations and study
- Model
 - Simplified representation of how things work
- Hypothesis
 - Proposal to explain some observation
 - “We see the Sun rise in the East every day, therefore the Sun must orbit the Earth”

The Scientific Method

- Starts with an observation – but never ends!
- Come up with an hypothesis to explain the observation
 - Must make a testable prediction
- Test the predictions made – make more observations
- Predictions found to be correct
 - Great! Make more predictions and continue testing
- Predictions found to be incorrect
 - Oops! Modify or reject your hypothesis

The Scientific Method

- The scientific method as an ongoing process:

Summary

- Astronomy is the study of the universe and everything in it
- We study astronomy to learn the scientific way of thinking
- The scientific method is a never ending process that allows scientists to continually modify, refine and improve their theories and models

Introduction to Astronomy

Numbers and Light Travel Time

Presented by Daniel Sega

Numbers in Astronomy

- Astronomy studies both the very large and very small
 - Numbers need to be expressed in scientific notation
 - Example – The distance from the Earth to the Sun can be written as:
 - 150,000,000 km or 1.5×10^8 km. The latter is more convenient for the vastly larger distances we will deal with!
- Scientific Notation
 - To convert a number to scientific notation, move the decimal point until there is only 1 number to the left – Count the number of places moved
 - Move the decimal point to the left – positive exponent ; to the right – negative exponent

Scientific Notation - Examples

- Example 1:
 - 314,000,000
 - We move the decimal point to the left 8 places
 - The number becomes 3.14×10^8
- Example 2:
 - 0.00004563
 - We move the decimal point to the right 5 places
 - The number becomes 4.563×10^{-5}

SI or Metric Units

- All scientific measurements are made in metric units
 - Meter for length
 - Second for time
 - Kilogram for mass
- Other units can be derived from these
 - Velocity, Density, etc.

Distances in Astronomy

- The nearest star is 40,000,000,000,000 km from the Earth (40 trillion km!)
 - We can write this in scientific notation as 4.0×10^{13} but it is still a number beyond our comprehension
- Astronomers use the light-year for measuring large distances
 - The speed of light in a vacuum is a constant: 300,000 km/sec
 - The light-year is the distance light travels in one year (about 10 trillion km!)
 - In light-years, the nearest star is a little over 4 light years away
 - We may not be able to comprehend the distance, but the number is now more manageable

Distances in Astronomy - 2

- The light-year is too large to be used in the solar system
 - We use the astronomical unit (AU) to measure distances in the solar system
- The AU is defined to be the average distance between the Earth and the Sun
 - $1 \text{ AU} = 150,000,000 \text{ km}$
 - At this scale: Mars would be 1.5AU from the Sun and Neptune would be about 30AU from the Sun
- It is much easier to comprehend 1 mile than 5280 feet or 63,360 inches
- These definitions make the numbers more manageable

Light Travel Time

- Because light does not travel infinitely fast, it takes a certain amount of time to get to us
 - The light from the Sun takes about 8.5 minutes to get to Earth
 - The light from Alpha Centauri takes about 4.3 years to get to us
 - The light from the Andromeda Galaxy to us takes about 2.5 million years to get to us
- This means that:
 - We see the Sun as it was 8.5 minutes ago
 - We see Alpha Centauri as it was 4.3 years ago
 - We see the Andromeda Galaxy as it was 2.5 million years ago!

Light Travel Time - 2

- This means we can never see any object as it is right now
- When we look out into space, we are also looking back into time
- This means we can see what objects looked like long ago

Summary

- Scientific notation is used in astronomy to express both the very large and very small numbers that we work with
- Scientific measurements are made using SI (metric) units
- Distances in astronomy are so large that astronomers use the Astronomical Unit (AU) and light year to measure the vast distances

Summary

- Because light does not travel infinitely fast, we never see any object as it is at this instant in time

Introduction to Astronomy

A Tour of the Universe

Presented by Daniel Sega

A Trip Through the Universe!

- Let's take a trip where we can travel as fast as we wish and are not bothered by limitations like the speed of light
- We will start with our Earth and zoom outward to the edge of the universe
- We will then zoom back in and look at the universe of the very small objects

The Scale of the Universe

- We will use a website created by Cary and Michael Huang that allows us to scroll through both the largest and smallest scales of the universe - <http://htwins.net/scale2/>
- The Scale of the Universe

The Universe is Empty!

- If the Sun were the size of a basketball, the Earth would be a pea about a hundred feet away!
- The nearest star would be a few thousand kilometers away
 - There is nothing in between except those few peas and specks of dust in the solar system!
- Our solar neighborhood would be a dozen or so basketballs each a few thousand kilometers from each other
 - Space is very empty!

Summary

- We have seen the range of the universe, from the very large to the very small
- We have seen that the solar system and the universe are both essentially empty