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The Problem of Coordination

A scientific theory is typically presented with laws, principles, or equations

that involve terms specific to that theory:
s=vt+ (1/2)at>, PV = vT, F = ma, action = reaction

to mention only a few of the classical standbys. Although these terms are,
taken literally, symbols for functions with specified mathematical character,
they are often pronounced as if they were nouns already familiar before
the theory’s introduction: “distance”, “‘velocity”, “‘time”, “‘pressure”,
“temperature”’, and so forth. That nomenclature is introduced more by
way of informal commentary than explanation, and certainly does not
define the theoretical terms.” But the choice of familiar words does signify
something: they point to the sort of data to enter, and the sorts of
measurements that can help to determine the values of those functions.
The theory would remain a piece of pure mathematics, and not an empirical
theory at all, if its terms were not linked to measurement procedures. But
what is this linkage?

That question, which turns out to bring many further questions and
complexities in its train, poses what was once generally known as the

‘problem of coordination’.

()

The questions What counts as a measurement of (physical quantity) X? and
What is (that physical quantity) X? cannot be answered independently of each
other. To echo another such realization, I am not ashamed to admit that
this brings us to the famed ‘hermeneutic circle’ (Eco 1992: 64). We shall
examine this apparent circularity by focusing on the one hand on its more
abstract consideration by Reichenbach, and on the other hand the practical
response in history examined by Mach and Poincar’
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(”’)

In 1920 Reichenbach, wants to find a general coordination of math-
ematical spaces and their structure with physical relations. In his later
Philosophy of Space and Time he gives as first example how units of
length can receive their coordination: “a meter is the forty-millionth
part of the circumference of the earth” (Reichenbach 1958: 15). But
the recurring example of the concept of a straight line, or more gen-
erally a geodesic, as having as physical correlate a light ray, or the
path of a freely falling body, is not equally easy to understand. Nor is
the idea that congruence relations have as correlate coincidence with
transported rigid bodies.’ In these examples it is quite unclear how to
identify the physical correlate without using any geometric or kinematic
terms. How  are we to  describe  rigidity or  free
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fall without using the language of geometry, or of mathematical physics
in general? In the example that most preoccupied him about the theory
of relativity, non-simultaneity is to be thus related to non-connectability
through any signals, whether by light emission and reflection or by material
transport. Not only the modal character of “connectable” but also the
required identity-over-time (genidentity) of the material are as puzzlingly
theoretical as any of the terms in physical geometry. And so we find him
perplexed. He writes in 1920:6

It is characteristic of modern physics to represent all processes in terms of mathematical
equations. But the close connection between the two sciences must not blur their
essential difference. (Reichenbach 1965: 34)

The mathematical object of knowledge is uniquely determined by the axioms and
definitions of mathematics. (Ibid.)

The physical object cannot be determined by axioms and definitions. It is a thing
of the real world, not an object of the logical world of mathematics. Ofthand it
looks as if the method of representing physical events by mathematical equations
is the same as that of mathematics. Physics has developed the method of defining
one magnitude in terms of others by relating them to more and more general
magnitudes and by ultimately arriving at “axioms”, that is, the fundamental
equations of physics. Yet what is obtained in this fashion is just a system of
mathematical relations. What is lacking in such system is a statement regarding the
significance of physics, the assertion that the system of equations is true for reality.

(Ibid.: 306)

So how can empirical significance be achieved? The examples he has in
mind, as we just saw, are the use of rigid bodies as choice to set the
relation of spatial congruence (in effect, to measure length), the choice of
a light ray path in vacuo as physical correlate for geodesics, the choice of a
certain periodic process as setting the unit of time. Question: how are these
physical correlates to be identified without use of geometric or kinematic

terms?
Is the choice in question simply a choice of a function? A function re-

lating what to what? Isn’t a function a mathematical object itself, defined
in terms of a relation between mathematical objects? So Reichenbach

writes:
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The codrdination performed in a physical proposition is very peculiar. It differs
distinctly from other kinds of codrdination. For example, if two sets of points
are given, we establish a correspondence between them by codrdinating to every
point of one set a point of the other set. For this purpose, the elements of each
set must be defined; that is, for each element there must exist another definition
in addition to that which determines the codrdination to the other set. Such
definitions are lacking on one side of the codrdination dealing with the cognition
of reality. Although the equations, that is, the conceptual side of the codrdination,
are uniquely defined, the “real” is not. On the contrary, the “real” is defined by

coodrdination to the equations. (Ibid.: 37—8; my italics)”

Here Reichenbach was imagining, and discounting, the following naive
sort of reply:

what is called for is simply a function, a mapping, between mathematical
objects and physical objects or processes—what is puzzling about that?

The reason he discounts it is because to define a function we need to
have the domain and range identified first—and the question at issue was
precisely how that can be done without presupposing that we already have
a physical-mathematical relation on hand.

So what does Reichenbach mean, when he seems to point to a solution
with the words “On the contrary, the “real” is defined by coordination
to the equations”? (...) To effect the necessary coordination of abstract
mathematical structure to concrete empirical reality he posited a spe-
cial  class  of  mathematic-al-physical  principles— “‘coordinating
principles” or “‘axioms of coordination”’—whose role is precisely to in-
sure those conditions of possibility. These principles, Reichenbach argues
at that point, are to be taken as given or imposed a priori, and so to be

sharply distinguished from mere empirical laws (‘axioms of connection’).

() R eichenbach can coordinate a mathematical representation with phys-
ical objects, events, and processes only in a context where something is
already given that will make that possible.
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