
chapter 17

Simple Harmonic Motion

We’re now going to study what are called small oscillations, or simple
harmonic motion. Take any mechanical system that is in a state of equi-
librium. Equilibrium means the forces on the body add up to zero. It has
no desire to move. If you give it a little kick, a push away from the equilib-
rium point, what will happen? There are two main possibilities. Imagine
a marble on top of a hill. That is in unstable equilibrium because if you
give the marble a nudge, it will roll downhill and never return to you. The
other possibility involves stable equilibrium: if you push the system away
from equilibrium, there are forces bringing it back. The standard example
is a marble in a bowl: when it is shaken from its position at the bottom, it
will rock back and forth until it settles again. A rod hanging vertically from
the ceiling from a pivot, when pulled to the side and released, will swing
back and forth. These are examples of simple harmonic motion, which
results whenever any system is slightly disturbed from stable equilibrium.

The example that we’re going to consider is a mass m, resting on
a table, connected to a spring, which in turn is connected to the wall.
The spring is not stretched or contracted; the mass is at rest, as shown in
Figure 17.1. That’s what I mean by equilibrium. Now let it be displaced by
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276 Simple Harmonic Motion

Figure 17.1 The mass m rests on a table and is connected to a spring of force

constant k, which is anchored to the wall. The displacement from equilibrium is

denoted by x. It is positive in the figure but it could also be negative if the mass

were to be displaced the other way.

an amount x from this point of equilibrium. The spring force is F = −kx
and Newton’s law says

m
d2x

dt2
= −kx. (17.1)

If the mass strays to the right, x is positive and −kx is to the left, so as to
send it back toward its equilibrium position. If x is negative, the restoring
force is positive, again pointing to the equilibrium position.

We want to understand the behavior of such a mass. How do we
solve this problem? Our job is to find the function x(t) that satisfies this
equation, which we rewrite as follows:

d2x

dt2
= −ω2x (17.2)

ω=
√

k

m
. (17.3)

You can make it a word problem and say, “I’m looking for a func-
tion whose second derivative is minus itself, except for this number ω2.”
Trigonometric functions have the property that if you take two deriva-
tives, they return to minus themselves. So, you can guess that x = cos t
but it won’t work, as I showed you before. On the other hand, the
guess

x(t)= A cosωt (17.4)
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Simple Harmonic Motion 277

will obey this equation. While A is clearly the amplitude, ω is related to
the frequency of oscillations as follows. If I start at t = 0 when x = A, how
long do I have to wait until it comes back to A? I have to wait a time T ,
such that

ωT = 2π (17.5)

because that’s when the cosine returns to 1. That means the time that I
have to wait is

T = 2π

ω
. (17.6)

You can rewrite this as

ω= 2π

T
= 2π f (17.7)

where f = 1
T is what we would normally call frequency, which is how many

oscillations it completes per second. It is the inverse of the time period. In
physics talk, frequency usually means ω.

So, if you pull a mass and let it go, it oscillates with a frequency that
is connected to the force constant and the mass. If the spring is very stiff
and k is very large, the frequency is very high. If the mass is very big and
the motion is very sluggish, f is diminished. So, all that stuff you expect
intuitively is quantified by the solution to the equation, but there is more.
For example, it is not intuitively obvious that if you make the mass four
times as big, you will double the time period.

One remarkable part of the solution is that you can pick any A you
like without changing ω or T . Think about what that means. The ampli-
tude A is the amount by which you pulled the mass when you let it go. You
find that whether you pull the spring by one inch or by ten inches, it takes
the same time to finish a full back-and-forth motion. If you pull it by two
inches, compared to one inch, it has a longer way to go. But if you pull
it by two inches, the spring is going to be that much more tense, and it’s
going to exert a bigger force so that it will go faster for most of the time;
that’s very clear. But the fact that it goes faster in exactly the right way to
complete the trip in exactly the same time is rather a miraculous property
of Eqn. 17.2. If you tamper with it, if you add to the force even a tiny extra
term, say proportional to x3, then this feature is gone. It’s like saying that
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278 Simple Harmonic Motion

planets move around the sun in closed elliptical orbits only under the 1
r2

force. It is not true if the force falls as 1
r2.0000001 .

Now consider the following variant of this solution. You set your
clock to 0 at the origin in the graph. Suppose I set my clock to 0, right
there on the dotted vertical line in Figure 17.2 at t = π

2 . When my clock
says 0, x is not at the maximum; it vanishes. But it’s the same physics, and
it’s the same equation. Where, then, is the solution that describes what I
see? It is there and it comes from the fact that we had the latitude of adding
a certain angle φ, called a phase, to the solution:

x(t)= A cos[ωt +φ] . (17.8)

Your choice is φ = 0 and mine is φ = π
2 . You can verify that whatever we

pick for φ, the above x(t) will be a solution because two derivatives of the
solution with the φ is also −ω2 times itself. And, whatever you pick for
A, it will still work, because A cancels out of both sides in Eqn. 17.2. So,
whenever you have an oscillator, say, a mass and spring system, and you
want to know what x is going to be at all times, it is not enough to know
that it obeys Eqn. 17.2; you need to know the amplitude and the phase.
These are determined by knowing two things about the solution, which is
usually the x and v at some time, usually t = 0. For this reason we refer to
them as initial value data.

Let me give you an example. Suppose an oscillator has x(0)= 5 and
velocity v(0) = 0, at t = 0. What does that mean? I pulled the mass by 5
and I let it go. I give you the values of the spring constant k and the mass
m, and I say, “What’s the future x?”

Figure 17.2 The function A cosωt for the case A = 4, ω= 1. The dotted vertical

line is another possible way to set the clock to zero, another choice of phase,

namely φ = π
2 .
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Simple Harmonic Motion 279

First observe that the velocity corresponding to our solution Eqn.
17.8 is

v(t)= −ωA sin(ωt +φ). (17.9)

So we know two things at t = 0:

5 = A cos[0 +φ] (17.10)

0 = −Aω sin[0 +φ] . (17.11)

The second equation gives us two choices: either A = 0, which is a trivial
solution, or φ = 0, which lets A survive this test. The first equation with
φ = 0 gives A = 5 leading to the solution x(t)= 5cosωt . This is a problem
where we did not need a non-zero φ. But it could have been that when you
joined the experiment, you were somewhere to the right of the origin, on
the vertical dotted line in Figure 17.2, when you set your clocks to zero.
Then you would have, as your initial conditions, x = 0,v = −5ω, which
means φ = π

2 . Of course A = 5 as before.
Let us agree that, if there’s only one oscillator, it is perverse to set your

clock to 0 at any time other than when the oscillator is at its maximum
displacement, so that

x(t)= A cosωt . (17.12)

(If there are two oscillators oscillating out of step, it’s impossible to make
φ = 0 for both of them: you can set your clock to 0 when one of them is
at a maximum, but then the other may not be at its maximum.) Going
forward, remember that the velocity and acceleration are, for all future
times,

v(t)= −ωA sinωt (17.13)

a(t)= −ω2A cosωt

(
= − k

m
x(t) in accordance with F = ma

)
.

(17.14)

So the velocity also oscillates sinusoidally but with an amplitude ωA.
The acceleration also oscillates but with an amplitude ω2A. These two
results are true for any phase φ.
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280 Simple Harmonic Motion

Let us explicitly verify the law of conservation of energy. Consider the
total energy:

E(t)= 1

2
mv2 + 1

2
kx2 (17.15)

= 1

2
mω2A2 sin2ωt + 1

2
kA2 cos2ωt (17.16)

= 1

2
kA2 because ω2 = k

m . (17.17)

Thus, by magic, the time-dependent terms sin2ωt and cos2ωt have
the same coefficient, and you find that E(t) actually does not depend on
time at all. Even though position and velocity are constantly changing,
this combination will not depend on time. At the instant when the mass
has reached one extremity and is about to swing back, it has no veloc-
ity; it only has an x = A, and the energy of the oscillator is all potential
energy, 1

2 kA2.

17.1 More examples of oscillations

If a body is in stable equilibrium, and you disturb it, it rocks back and
forth, executing simple harmonic motion. The standard textbook example
is the mass on a spring, which we just studied. But it is a very generic
situation, as shown in Figure 17.3. Skipping the mass-and-spring example,
let us go to the top right, where we have a beam hanging from the ceiling by
a cable that is fixed to its center of mass (CM). If you twist it by an angle θ ,
it will try to untwist itself. Now we don’t have a restoring force but we have
a restoring torque. What can be the expression for the restoring torque τ ?
When you don’t do anything, the cable doesn’t do anything, so τ vanishes
when θ = 0. If θ �= 0, it is some function of θ , and the leading term in the
Taylor expansion would be proportional to θ :

τ(θ)= −κθ . (17.18)

The coefficient κ is the torsion constant, and the minus sign tells you it’s
a restoring torque. That means if you make θ positive, the torque will try
to twist you the other way. The torsion constant, which is the restoring
torque per unit angular displacement, is to rotations what the spring con-
stant was to linear oscillations: the restoring force per unit displacement.
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Simple Harmonic Motion 281

Figure 17.3 Some examples of simple harmonic motion. The left shows the

eternal favorite, the mass and spring; top right is a beam hanging from the ceiling

by a cable; the bottom left and right show a physical pendulum supported at the

pivot P, when it is in equilibrium, and when it is displaced by an angle θ . The

vector g represents the downward gravitational field of magnitude 9.8m/s2.

You have to find this κ , which is not given, the way k is. Once you do, you
can say

I
d2θ

dt2
= −κθ (17.19)

where I is the moment of inertia of the beam about the point of suspen-
sion.

Mathematically, this equation is identical in form to

m
d2x

dt2
= −kx (17.20)

with the substitution x → θ ,m → I , k → κ . So the answer follows:

θ(t)= A cosωt (17.21)

ω=
√
κ

I
. (17.22)
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282 Simple Harmonic Motion

The mass-spring system executes linear oscillations, while the beam
executes angular oscillations. Another example of the latter is the simple
pendulum. The pendulum has a bob of mass m hanging by a massless rod
of length l. If you let it hang vertically, it will stay that way forever. No
torque, no motion. Suppose you pull it by an angle θ and release it. To
predict the future, you need to find I and κ . Now I is easy: for a single
mass m at a distance l from the pivot point, I = ml2. To find κ , you need
to find the restoring torque per angular displacement. If you displace by θ ,
the torque about the pivot point is

τ = −mgl sinθ � −mglθ (17.23)

where I have approximated sinθ by θ , which is the leading term in the
Taylor expansion. With just this term, we can read off κ :

κ = −τ
θ

= mgl. (17.24)

So

ω=
√
κ

I
=

√
mgl

ml2
=

√
g

l
, (17.25)

from which follows the familiar formula

T = 2π

ω
= 2π

√
l

g
. (17.26)

Notice that if you displace the pendulum by large angles, when sinθ cannot
be approximated by θ , the frequency will no longer be independent of the
amplitude.

Note that finding ω took some work. You had to disturb the system
from equilibrium and find the restoring torque per unit angle κ = − τ

θ and
also compute I , whereas in the case of the mass-spring system, you were
simply given m and k. In the case of the twisted cable, κ will be given to
you, because computing it from first principles requires work beyond the
scope of this course.

Let us move from a pendulum with all the mass concentrated in the
bob to a physical pendulum, some irregularly shaped flat planar object, as
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Simple Harmonic Motion 283

shown in the middle of the second line of Figure 17.3. You drive a nail
through it at some pivot point P and hang it on the wall. It will come to
rest in a certain equilibrium configuration. Think about where the center
of mass will be. It will lie somewhere on the vertical line going through
P—otherwise the force of gravity, which is effectively acting at the CM,
will produce a torque around P.

Let us look at the forces. This body, when hanging in its rest position,
has two forces on it: the nail, which is pushing up, and the weight of the
body mg, which is pushing down, cancel each other. The nail will keep it
from falling. The nail will not keep it from swinging, because the force of
the nail, acting as it does at the pivot point, is unable to exert a torque,
whereas the minute you rotate the body, mg is able to exert a torque, as
is clear from the figure. That’s why if you rotate it and let go, it will start
swinging back and forth.

What will the torque be? It will be the same as before: −mgl sinθ ,
where l is now the distance between the pivot point and the center of mass.
As far as the torque is concerned, it’s as if all the mass were sitting at the
CM. But the moment of inertia is not as if all the mass is sitting at the CM,
in which case it would be ml2. So don’t make that mistake. All the mass
is not sitting at the CM; it is all over the place. The moment of inertia is
I = ICM + ml2 by the parallel axis theorem, where ICM is hard to compute
for an irregular object.

So, every problem that you will ever get will look like one of these two.
Either something is moving linearly with a coordinate that you can call x,
or something is rotating or twisting by an angle you can call θ . And if you
want to find out the frequency of vibration, you have to disturb it from
equilibrium—by pulling the mass, twisting the cable, or displacing the
pendulum from its equilibrium position—in order to find the restoring
force or torque per unit displacement.

17.2 Superposition of solutions

I will now go over more complicated oscillations using some of the
formulas we learned in the last chapter. Here is the most important one:

eiθ = cosθ + i sinθ . (17.27)

This is a formula worth memorizing. You should realize that given any
expression involving complex numbers, you can get another equation by
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284 Simple Harmonic Motion

taking the complex conjugate of both sides, where every i is changed to
minus i. That will give you

e−iθ = cosθ − i sinθ . (17.28)

This is true because if two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2

are equal, then the real and imaginary parts are separately equal, and so are
their complex conjugates: z∗

1 = x1 − iy1 = x2 − iy2 = z∗
2 . The two previous

equations can be inverted to give

cosθ = eiθ + e−iθ

2
(17.29)

sinθ = eiθ − e−iθ

2i
. (17.30)

You don’t need trigonometric functions once you have the exponen-
tial function, provided you let the exponent be complex or imaginary. This
is one example of unification. People always say Maxwell unified this, and
Einstein tried to unify that. Unification means things that you thought
were unrelated are, in fact, related, and they are different manifestations
of the same thing. When we first discovered trigonometric functions, we
were thinking right-angle triangles, opposite sides and adjacent sides, and
so on. Then, we discovered the exponential function, which, by the way,
was used by bankers who were trying to calculate compound interest con-
tinuously at every instant. The fact that those functions are related is a
marvelous result, but it emerges only if you invoke complex numbers.

Finally, remember that there are two ways to write a complex num-
ber:

z = x + iy = reiθ ≡ |z|eiθ . (17.31)

Now we use the new tools to attack the familiar equation

ẍ ≡ d2x

dt2
= −ω2

0x ω0 =
√

k

m
(17.32)

where the second derivative of x is written as ẍ, and ω0, the natural
frequency of vibrations of the oscillator, has been given a subscript to
distinguish it from other ω’s that will arise shortly. Earlier we solved this
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Simple Harmonic Motion 285

equation by turning it into a word problem: “What is the function, x(t),
with the property that two derivatives of the function look like the func-
tion itself, except for a proportionality constant?” We racked our brains
and we remembered that sines and cosines had this property. One deriva-
tive is no good; it turns sine into cosine and vice versa. Two derivatives
bring back the function you started with, which is why the answer could
be sines or cosines. But now I’m going to solve the equation a different
way. I know a function that is even better—it reproduces itself when it is
differentiated once. If so, it’s obvious that its 92-nd derivative will also look
like the function. But recall why we rejected

x(t)= Aet . (17.33)

I want to get something proportional to −x(t) upon taking two
derivatives, and this does not do it: I get +x(t). It does not help to try
something like Ae−t because after two derivatives I again get +x(t). So
this function is no good. Also, it doesn’t look like what I want. Even with-
out doing much work, I know that if I pull this spring it’s going to go back
and forth, whereas these functions are exponentially growing or they’re ex-
ponentially falling; they just don’t do the trick. But now we have a way out:
let the exponent be complex.

We are going to make a guess, called an ansatz in the business:

x(t)= Aeαt (17.34)

where we will now allow α to be some general complex number.
The ansatz is a tentative guess with some parameters, A and α in

this instance, the judicious choice of which may yield a solution. If you’re
lucky, it will work. If not, you move on and try another solution; it is just
like speed dating.

So, let’s take the ansatz in Eqn. 17.34, put it in Eqn. 17.32, and
demand that it be satisfied:

ẍ +ω2
0x = 0 (17.35)

α2Aeαt +ω2
0Aeαt = 0 (17.36)

A(α2 +ω2
0)e

αt = 0. (17.37)
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286 Simple Harmonic Motion

Our ansatz will work if we manage to get (Aeαt )(α2 +ω2
0) to vanish.

How many ways are there to kill this beast? The choice A = 0 is called the
trivial solution and corresponds to the oscillator sitting still forever. So A
can be anything, except 0. Now eαt never vanishes (even if α is complex),
as here so it is not the cause of the zero. So it must be that

α2 +ω2
0 = 0 which means α = ±iω0. (17.38)

(More generally, if in place of eαt , which never vanishes, we had any func-
tion that did not vanish identically, we can still cancel it by picking a time
when it is non-zero, and deduce Eqn. 17.38.)

So now I have two solutions of the form Aeαt . For A you can pick any
number you like, in fact, real or complex—it doesn’t matter. The equation
is satisfied. But α can be only one of two numbers: ±iω0.

How do we choose between the two solutions

x+(t)= Aeiω0t and (17.39)

x−(t)= Ae−iω0t ? (17.40)

It turns out that we can pick both, and I’ll tell you what I mean
by that. Let us begin with the fact that Eqn. 17.32 is a homogeneous, lin-
ear differential equation. I’ll have to tell you what that means through an
example:

17
d96x

dx96
+ 16

d3x

dx3
+ 2x = 0. (17.41)

It is homogeneous because you only find a single power of x anywhere,
which happens to be the first power here. It is a linear equation because you
find either the function x or its derivatives, but never the squares of cubes
or higher powers of x or the derivatives. Note that the 96-th derivative does
not change this fact; it is still the 96-th derivative of x and not, say, x3. By
contrast,

d2x

dt2
+ 3x2 = 0 (17.42)

is a non-linear equation because of the x2 term. A linear equation has a
very important property that lies at the heart of so many things we do.
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This is called the principle of superposition, and it states: if x1(t) and x2(t)
are two solutions of a homogeneous linear equation, then so is any linear
combination of them with constant (t-independent) coefficients A and B:

x(t)= Ax1(t)+ Bx2(t).

Let us prove this for the oscillator case to understand where linearity
comes in. Given

ẍ1 +ω2
0x1 = 0 (17.43)

ẍ2 +ω2
0x2 = 0, (17.44)

let us multiply the first by a constant A, the second by B, and add
to get

Aẍ1 + Aω2
0x1 + Bẍ2 + Bω2

0x2 = 0 (17.45)

d2(Ax1 + Bx2)

dt2
+ω2

0(Ax1 + Bx2)= 0, (17.46)

which clearly shows that x(t)= Ax1(t)+Bx2(t) is also a solution. We used
the fact that any derivative of a linear combination is the same linear com-
bination of the derivatives and that the non-derivative term was linear in
x. Try doing this for the non-linear case, say Eqn. 17.42, and you will find
it does not work because 3Ax1(t)2 + 3Bx2(t)2 �= 3(Ax1(t)+ Bx2(t))2.

The bottom line is that if you give me two independent solutions
to a homogeneous linear equation, I can manufacture an infinite number
of solutions because I can pick A and B any way I like. The solutions x1

and x2 are like unit vectors i and j, whose linear combinations with all
possible coefficients yield an infinite number of vectors in two dimensions.
A word of caution: i and 3i are also two vectors, but by combining them
you can only get solutions parallel to i. These two vectors are said to be
linearly dependent, which in this simple case means one is a multiple of the
other. Likewise eiαt and 5eiαt cannot be used to build anything other than
multiples of eiαt . However, e−iαt is an independent object because it is not
a multiple of eiαt .
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288 Simple Harmonic Motion

By the same analogy with i and j, if a linear combination of two
linearly independent functions equals another linear combination, the
coefficients have to match on both sides. Thus

Aeαt + Be5αt = Ceαt + De5αt implies (17.47)

A = C B = D. (17.48)

17.3 Conditions on solutions to the harmonic oscillator

Let us then consider the general solution

x(t)= Aeiω0t + Be−iω0t . (17.49)

How do we decide what A and B are? In general they are arbitrary.
But on a given day, when you pull the mass by 9 cm and release it from
rest, A and B have to be chosen so that at t = 0, x(0) = 9 and the veloc-
ity v(0) = 0. But I have a bigger problem. The answer is manifestly not
real, and we know x is a real function. That is not a mathematical re-
quirement of the equation, but a physical requirement. To say that x is real
means the following. A complex number x + iy has a complex conjugate
x − iy, and the property of real numbers is that when you take the com-
plex conjugate, nothing happens: it satisfies the condition z = z∗. There
is no imaginary part whose sign you can flip. Real numbers are their own
complex conjugates.

So, I’m going to demand that this solution, in addition to satisfying
the basic equation, also is real. To do that, I’m going to demand x(t) equals
its complex conjugate x∗(t):

x∗(t)= A∗e−iω0t + B∗e+iω0t = x(t)= Aeiω0t + Be−iω0t . (17.50)

To find x∗(t) given x(t), I conjugated everything in sight. The com-
plex conjugates of A and B became A∗ and B∗. The complex conjugate of
e+iω0t is e−iω0t and vice versa, because the i goes to minus i while t and ω0

are real numbers and nothing happens to them.
So x(t) = x∗(t) for all times t , if the coefficients of e±iω0t in Eqn.

17.50 match:

A = B∗ B = A∗. (17.51)
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However, if A = B∗, then B = A∗ follows automatically because both
are saying the same thing: A and B have equal real parts and opposite imag-
inary parts. This can also be seen another way. Conjugating both sides of
A = B∗, we get A∗ = (B∗)∗ = B because conjugating any complex number
twice changes the sign of its imaginary part twice, which is equivalent to
doing nothing: (z∗)∗ = z.

The reality of x then leads to the solution

x(t)= Aeiω0t + A∗e−iω0t . (17.52)

In other words, B is not an independent number; it has to be the complex
conjugate of A if x is to be real. I hope you can see at a glance that the
solution above is real, because whatever the first animal is, the second is
its complex conjugate and has the opposite imaginary part. When you add
them, the answer will be real. But A is not necessarily real. In polar form it
has a modulus |A| and a phase φ, so that

x(t)=|A|eiφeiω0t +|A|e−iφe−iω0t = |A|ei(φ+ω0t)+|A|e−i(φ+ω0t)

= |A|
[

ei(φ+ω0t)+ e−i(φ+ω0t)
]

. (17.53)

Now, what is this function I have in brackets? You should be able to
recognize this creature as a cosine. We have ended up with

x(t)= 2|A|cos(ω0t +φ). (17.54)

This describes an oscillator of amplitude 2|A| and phase φ. Notice
how the amplitude and phase of the oscillator were encoded in a single
complex number A.

Suppose you had chosen to use sinω0t and cosω0t as the two basic
solutions instead of e±iω0t . The general solution would have been

x(t)= A cosω0t + B sinω0t (17.55)

where A and B are arbitrary. However, demanding that x be real will force
them both to be real. No matter how you slice it, a physical oscillator
will have in its solution just two free parameters: they could be two real
numbers A and B as above or one complex number A = |A|eiφ as before.
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Now, this is a long and difficult way to get back the old answer. Your
reaction may be, “We don’t need these complex numbers. We have enough
problems in life; we’re doing well with sines and cosines, thank you.” But
now I’m going to give you a problem where you cannot talk your way out
by just turning it into a word problem.

17.4 Exponential functions as generic solutions

Here is the problem: a mass m, connected to a spring of force constant k,
is moving on a surface with friction. The minute there is friction, you have
an extra force. We know that if you’re moving to the right, the force of
friction is to the left, and, if you are moving to the left, the force is to the
right, that is, the frictional force is velocity dependent. The equation that
crudely models this velocity dependence is

mẍ = −kx − γmẋ (17.56)

where I include a factor m in the frictional coefficient to simplify subse-
quent algebra. Dividing by m, our equation becomes

ẍ + γ ẋ +ω2
0x = 0. (17.57)

Can you solve this as a word problem? It’s going to be difficult, be-
cause you want a function that, when you take two derivatives, add some
amount of its own derivative, and then some of itself, gives zero. It is not
clear a trigonometric function can do that. However, an exponential has
to work because it reproduces itself no matter how many derivatives you
take. Thus we make the ansatz

x(t)= Aeαt . (17.58)

Note that I do not explicitly use a complex exponential. If α is meant to
be complex, it will come out that way; we are not forcing it to be real in
making this ansatz. When we feed it into Eqn. 17.57 we find, because every
derivative brings a factor of α,

A(α2 + γα+ω2
0)e

αt = 0. (17.59)
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Once again, A cannot be the cause of the zero, because if A vanishes you’ve
killed the whole solution and eαt is not going to vanish, so the only way is
for the stuff in brackets to vanish:

(α2 + γα+ω2
0)= 0. (17.60)

That means the α that you put into this guess must be one of the
roots

α± =
−γ ±

√
γ 2 − 4ω2

0

2
= −γ

2
±

√
γ 2

4
−ω2

0. (17.61)

The general solution is

x(t)= Aeα+t + Beα−t (17.62)

= A exp

[(
−γ

2
+

√
γ 2

4
−ω2

0

)
t

]

+ B exp

[(
−γ

2
−

√
γ 2

4
−ω2

0

)
t

]
. (17.63)

The motion described by the solution depends on the value of γ
2ω0

.

17.5 Damped oscillations: a classification

Let us classify the different kinds of behavior that emerge as we vary γ
2ω0

.

17.5.1 Over-damped oscillations

We first consider the over-damped case

γ

2
>ω0. (17.64)

In this case both roots α± are real and both are negative: α− is negative
being a sum of two negative numbers, while α+ is negative because the
positive square root is smaller than γ /2. This means that x(t → ∞)→ 0,
which is in accord with our expectation that friction will eventually bring
the oscillations to an end.
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How about A and B? First of all, they are both real as can be seen by
equating x(t) to its conjugate. Because the exponentials are real they do
not respond to conjugation and we require A = A∗ and B = B∗.

To find A and B, we need two pieces of data, which I will take to
be initial position, x(0), and the initial velocity, v(0). If we put t = 0 in
Eqn. 17.62 we find

x(0)= A + B. (17.65)

Next I take the derivative of Eqn. 17.63 and then set t = 0 to find

v(0)= Aα+ + Bα−. (17.66)

Solving these simultaneous equations will yield A and B. To test yourself,
try showing that if the oscillator is displaced to some x(0) > 0 and released
from rest, that is, v(0) = 0, then x(t) never becomes 0 and hence cannot
become negative. This means the mass will simply relax to its equilibrium
position without any oscillations.

17.5.2 Under-damped oscillations

In turning on friction we got carried away: from being 0 in the very first
example, γ jumped to a value greater than 2ω0. Consider now the inter-
mediate case when 0< γ < 2ω0. What do the solutions look like now? We
should be able to guess that, at least for very tiny values of γ , the oscilla-
tor will oscillate as before, but with a slowly diminishing amplitude. Let us
verify and quantify this expectation.

The roots now become

α± = −γ
2

±
√
γ 2

4
−ω2

0 (17.67)

= −γ
2

± i

√
ω2

0 − γ 2

4
(17.68)

≡ −γ
2

± iω′. (17.69)
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We have introduced yet another frequency

ω′ =
√
ω2

0 − γ 2

4
<ω0, (17.70)

which describes the oscillatory part of the motion. Note that the roots are
complex conjugates

α+ = α∗− (17.71)

and the general solution becomes

x(t)= Aeα+t + Beα−t (17.72)

= e− 1
2γ t

[
Aeiω′t + Be−iω′t

]
. (17.73)

I leave it to you to verify that once again x = x∗ implies A∗ = B because the
A and B terms get exchanged under complex conjugation. Repeating the
analysis for the case γ = 0, this solution may be rewritten as

x(t)= Ce− 1
2γ t cos

[
ω′t +φ] where (17.74)

C = 2|A| and A = |A|eiφ . (17.75)

Figure 17.4 shows what the damped oscillation looks like for A = 2,
γ = 1, and ω′ = 2π . This is typically what you will see if you excite any

Figure 17.4 Damped oscillations with x(t)= 4e−.5t cos(2π t), i.e., A = 2, γ = 1,

and ω′ = 2π . The falling exponential shows the decay of the amplitude.
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system with some modest amount of frictional loss. If γ is very small, you
may not realize the oscillations are being damped.

17.5.3 Critically damped oscillations

Having considered the cases γ > 2ω0 (over-damped) and γ < 2ω0 (under-
damped), we turn to the critically damped case γ = 2ω0. In this case α+ =
α− = −γ

2 . Where is the second solution to accompany Ae− γ t
2 ? We know in

every problem there must be two solutions, because we should be able to
pick the initial position and velocity at will. That’s an area of mathematics
I don’t want to enter now, but you can verify that the second solution is

Bte− γ t
2 , which is not a pure exponential. You will find the derivation of this

solution in my math book. The general solution for the critically damped
case is thus

x(t)= e− γ t
2 [A + Bt] . (17.76)

Try to show in this case that A = x(0) and B = v(0)+ γ
2 x(0).

17.6 Driven oscillator

Next we turn to a more challenging problem. I have, as before, the mass,
the spring, and friction. But now I’m going to apply an extra force,
F0 cosωt . This is called a driven oscillator. Imagine that I am actively shak-
ing the mass with my hand, exerting the force F0 cosωt . Now there are

threeω’s:ω0 =
√

k
m , the natural frequency of the undamped free oscillator;

ω′ =
√
ω2

0 − γ 2

4 , which entered the under-damped oscillator; and finally ω,
the frequency of the driving force, which is completely up to me to choose.
The equation to solve is

mẍ + γmẋ + kx = F0 cosωt , (17.77)

which we rewrite as

ẍ + γ ẋ +ω2
0x = F0

m
cosωt . (17.78)

This problem is difficult because you cannot guess the answer to it by
turning it into a word problem: neither x(t)∝ cos(ωt)nor x(t)∝ sin(ωt) is
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a good ansatz because you cannot have all four terms be functions of the
same kind as the ansatz. In fact, only an exponential can lead to all four
terms being the same functional form (exponential) because taking any
number of derivatives will leave it alone. But our driving force is a cosine
and not an exponential.

Here is a clever trick to beat this problem. Recall that with no driving
force, if

ẍ1 + γ ẋ1 +ω2
0x1 = 0 and (17.79)

ẍ2 + γ ẋ2 +ω2
0x2 = 0, (17.80)

then multiplying the first by a constant A and the second by a constant B
and adding, we found that Ax1 + Bx2 was also a solution:

d2[Ax1 + Bx2]

dt2
+ γ d[Ax1 + Bx2]

dt
+ω2

0 [Ax1 + Bx2] = 0. (17.81)

I have used the fact that the derivatives of a linear combination Ax1 + Bx2

is the same linear combination of the derivatives.
Suppose now that there is a driving force behind x1 and x2:

ẍ1 + γ ẋ1 +ω2
0x1 = F1(t)

m
(17.82)

ẍ2 + γ ẋ2 +ω2
0x2 = F2(t)

m
. (17.83)

It follows by the same manipulations that

d2[Ax1 + Bx2]

dt2
+ γ d[Ax1 + Bx2]

dt
+ω2

0 [Ax1 + Bx2]

= A
F1(t)

m
+ B

F2(t)

m
. (17.84)

In other words, in a linear equation, the response to a linear combination of
forces is the corresponding linear combination of responses.
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Now for the trick. Let x(t) be the solution to

ẍ + γ ẋ +ω2
0x = F0

m
cosωt (17.85)

and y(t) the solution to

ÿ + γ ẏ +ω2
0y = F0

m
sinωt . (17.86)

(We could call these two solutions x1 and x2, but there is a reason for this
nomenclature.) Multiply the second equation by i and add it to the first to
obtain

d2
[
x + iy

]
dt2

+γ d
[
x + iy

]
dt

+ω2
0

[
x + iy

] = F0

m
(cosωt + i sinωt)

= F0

m
eiωt (17.87)

z̈ + γ ż +ω2
0z = F0

m
eiωt where (17.88)

z(t)= x(t)+ iy(t). (17.89)

This is a special case of Eqn. 17.84 with A = 1 and B = i.
So, in Eqn. 17.88 I have manufactured a problem in which the thing

that’s vibrating is not a real number, but z = x + iy. The force driving it is
also not a real number; it is F0

m eiωt . The point is that if I can solve the problem
somehow, I can get x(t) as the real part of the answer. (The imaginary part
of it, y(t), will be the solution to the fictitious Eqn. 17.86 I concocted.)

And I can solve Eqn. 17.88 for z(t) very easily because I can now
make the ansatz

z(t)= z0eiωt . (17.90)

Because every derivative pulls out an iω we have

[−ω2 + iωγ +ω2
0

]
z0eiωt = F0

m
eiωt . (17.91)
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We may safely cancel eiωt because it is not identically zero to obtain the
equation for z0:

z0 = F0/m[−ω2 + iωγ +ω2
0

] (17.92)

= F0/m

Z(ω)
where we have defined (17.93)

Z(ω)= [−ω2 + iωγ +ω2
0

]
. (17.94)

The magic of the exponential is that the differential equation 17.88 has
reduced to an algebraic equation for the (complex) amplitude z0

Z(ω)z0 = F0

m
, (17.95)

which is solved by dividing both sides by Z(ω):

z0 = F0/m

Z(ω)
. (17.96)

It follows that

z(t)= z0eiωt = [F0/m]eiωt

Z(ω)
. (17.97)

All we need to do now is take the real part to get x(t). If you thought
that this means replacing eiωt by cosωt you are wrong, because

Z(ω)= [−ω2 + iωγ +ω2
0

]
(17.98)

is itself a complex number whose real and imaginary parts can mix with
the real and imaginary part of eiωt . So here is the correct way to do this.
Take Z(ω) in Cartesian form

Z(ω)= [
ω2

0 −ω2]+ iωγ (17.99)
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and write it in polar form

Z(ω)= |Z |eiφ where (17.100)

|Z | =
√[
ω2

0 −ω2
]2 +ω2γ 2 (17.101)

φ = tan−1
[

ωγ

ω2
0 −ω2

]
. (17.102)

Figure 17.5 shows Z in the complex plane.
Return to Eqn. 17.97 with this result to obtain

z(t)= [F0/m]eiωt

Z(ω)
= [F0/m]eiωt

|Z |eiφ
(17.103)

= F0

m|Z |ei(ωt−φ). (17.104)

Now we can take the real part easily because F0
m|Z | is real. Here is the final

answer:

x(t)= F0

m|Z | cos(ωt −φ)≡ x0 cos(ωt −φ). (17.105)

Notice that the cause, F0
m cos(ωt), produces an effect that is reduced

in magnitude by |Z | and shifted in phase into cos(ωt −φ). While there is a
way to obtain both these transformations with real numbers, it is so much

Figure 17.5 The complex number Z(ω) in its Cartesian and polar forms.
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easier with complex numbers: dividing the force by a complex number
Z = |Z |eiφ achieves both these effects in one shot. Bear in mind that the
phase φ cannot be eliminated by choice of the origin in time because it is
the phase relative to that of the applied force F0 cosωt .

Let us pause to analyze Eqn. 17.105. Keeping F0
m fixed, let us vary ω,

the frequency of the driving force, to see what happens to x0, the amplitude
of vibrations. When ω= 0, that is, when the force does not vary with time,
we find

|Z(0)| =
√[
ω2

0 −ω2
]2 +ω2γ 2

∣∣∣∣
ω=0

= ω2
0 (17.106)

so that

x0 = F0

mω2
0

= F

k
, (17.107)

which makes sense: a constant force F will produce a displacement F
k .

When ω → ∞, we find x0 → 0. Somewhere in between these ex-
tremes, the response peaks. It is clear that if γ is very small, we get the
biggest response when ω = ω0: this is when |Z | is the smallest. This is
called resonance. It tells us that the response of the system to a driving
force is greatest when the driving frequency equals the natural frequency.
Imagine you are pushing a kid on a swing, by periodically supplying the
force. If you are not paying attention and pushing at your own frequency,
sometimes you will slow the kid and sometimes you will speed up the kid.
It is best to push exactly when the kid is moving away from you. Note that
in a real swing γ > 0, and there is no danger of the kid flying off to infinity.

Radios exploit the phenomenon of resonance. Right now this room is
filled with electromagnetic signals from many stations, and yet you are able
to listen to the one you want. The trick is that you can adjust the natural
frequency of the electrical circuits picking up the signal by turning the dial
to match that of the station of interest. For this plan to succeed, you need
the graph in Figure 17.6 to be extremely sharp. Imagine that there are just
two stations at two frequencies. Even if you tune the radio to resonate with
one, you will be getting a tiny response from the tail of the other one. The
goal is to keep this interference to a minimum.

Where are the free parameters in this problem? Everything seems de-
termined in Eqn. 17.105. What if this solution does not agree with some
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Figure 17.6 The amplitude z0(ω) for a system with ω0 = 1 and γ = 0.1 driven

by an external force with F0
m = 1.

initial condition, such as a specified x(0) or v(0)? The answer is that we
can add to this solution (called the particular solution) any solution to the
equation with F(t)= 0, referred to as the complementary solution and given
in Eqn. 17.73. Thus the most general solution to the driven oscillator is

x(t)= F0

m|Z | cos(ωt −φ)+ e− 1
2γ t

[
Aeiω′t + Be−iω′t

]
. (17.108)

Even after adding this term x(t) satisfies Eqn. 17.78 because the
added terms disappear when we compute the left-hand side. Another way
to see this is to invoke superposition: consider the right-hand side of
Eqn. 17.78 to be F0

m cos(ωt)+ 0 and add the response due to 0, which is
the complementary function. The numbers A and B can once again be
chosen to match the initial conditions, say the initial position and velocity.
One may forget about the complementary function at large times, because
it dies out exponentially.

Finally, consider the force pushing the kid as described earlier. It is
periodic but not simply the function cosωt . (For example, the force on the
kid acts only for a small part of each period, while the cosine is non-zero
except twice in a period.) Amazingly, we can use the technique described
above to find the response to any periodic force, not necessarily a simple
cosine or oscillatory exponential function. This is thanks to the mathe-
matician Joseph Fourier, who showed that any function F(t)with period T
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may be written as a sum of oscillating exponentials, with suitable periods,
multiplied by suitable coefficients Fn:

F(t)=
∞∑

n=−∞
Fne2π int/T ≡

∞∑
n=−∞

Fneiωnt where (17.109)

ωn = 2πn

T
. (17.110)

In the right-hand sides of Eqns. 17.109 and 17.110, we have a sum of forces
with frequencies ωn = 2πn

T . I state without proof that the coefficients are
determined by the given F(t) as follows:

Fn = 1

T

∫ T

0
F(t)e−iωnt dt . (17.111)

We are done because we know the response z0(n) due to each oscillating
term Fneiωnt in the sum, and by previous linearity arguments the total
response is the corresponding sum over responses:

z(t)=
∞∑

n=−∞
z0(n)e

iωnt where (17.112)

z0(n)=
Fn
m

Z(ωn)
. (17.113)

If the driving force F(t) is real, the z(t) above will automatically turn
out to be real. If you want more practice using complex numbers, you are
invited to read the following proof.

First note that

−ωn = 2π(−n)

T
= ω(−n) (17.114)

F∗
n = 1

T

∫ T

0
F(t)e+iωnt dt (17.115)

= 1

T

∫ T

0
F(t)e−i(−ωn)t dt = 1

T

∫ T

0
F(t)e−iω(−n)t dt (17.116)

= F−n. (17.117)
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Now pair the contributions from the terms in Eqn. 17.112 with any n and
−n:

z0(n)e
iωnt + z0(−n)eiω(−n)t =

Fn
m

Z(ωn)
eiωnt +

F−n
m

Z(ω−n)
eiω(−n)t

(17.118)

=
Fn
m

Z(ωn)
eiωnt +

[
Fn
m

Z(ωn)
eiωnt

]∗
,

(17.119)

which is manifestly real, being a sum of something plus its conjugate. We
have also used

Z(ω(−n))= Z(−ωn)= Z∗(ωn), (17.120)

because for any ω we have

Z(ω)= [−ω2 + iωγ +ω2
0

]
(17.121)

Z∗(ω)= [−ω2 − iωγ +ω2
0

] = Z(−ω). (17.122)
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