
chapter 6

Conservation of Energy in d = 2

6.1 Calculus review

We begin with some mathematical preparation for what I’m going to do
next. Let’s take some function f (x) shown in Figure 6.1. I start at some
point x with a value f (x). When I go to a nearby point, x+x, the function
changes by f = f (x+x)− f (x). All these tiny quantities are exaggerated
in the figure so you can see them. We are going to need approximations to
the change in the function as x → 0. A common one is to pretend the

function is linear with the local value of the slope f (x) = df
dx , as depicted

Figure 6.1 The change, f , in a function f (x) as x changes by x, may be

approximated by f  f (x)x, where f (x) = df
dx . The solid line is the actual

function and the dotted line is the approximation by a straight line of slope f (x).
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Conservation of Energy in d = 2 83

by the dotted line. The change in f along the straight line is f (x)x. It
differs from the actual f by a tiny amount because the function is not
following the same slope that you have to begin with; it’s curving up. Take
a concrete example:

f (x) = x2 (6.1)

f (x +x) = x2 + 2xx + (x)2 (6.2)

f = 2xx + (x)2 (6.3)

f = f (x)x + (x)2. (6.4)

This result is valid for x of any size. We see that the exact change is
f (x)x plus something quadratic in x. If we are interested in very small
x, we may start ignoring all but the term linear in x:

f = f (x)x +O(x)2 (6.5)

where O(x)2 signifies that the neglected terms are of order (x)2 and
higher.

Often we will use

f  f (x)x (6.6)

as an approximation for small x.
Consider, for example, f (x) = (1 + x)n and its values near x = 0.

Clearly f (0) = 1. Suppose you want the function at a point x very close to
the origin. In this case x = x −0 is just x itself and the approximate value
will be

f (x) = f (0)+ f (0)x + . . . = 1 + n (1 + x)n−1

x=0 x + . . . = 1 + nx + . . . ,

(6.7)

a result we will exploit mercilessly.
On other occasions, we will take the limit x → 0 in the end and

write the equality

df = f (x)dx (6.8)
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84 Conservation of Energy in d = 2

with the understanding that both sides are to be integrated to obtain

 2

1
df = f (x2)− f (x1) =

 x2

x1

f (x)dx. (6.9)

6.2 Work done in d = 2

Now we are going to derive the work-energy theorem and the law of con-
servation of energy in two dimensions. I am hoping I will get some relation
like K1 +U1 = K2 +U2, where U = U (x,y). How do you visualize the func-
tion of two variables f (x,y)? On top of each point (x,y) you measure the
value of f (x,y) in the third perpendicular direction. The function defines a
surface over the x − y plane and the distance from the plane to the surface
is the value of f at the point (x,y). For example, (x,y) could be coordinates
of a point in the United States and the function could be the temperature
T(x,y) at that point. So you plot on top of each point in the United States
the local temperature.

Once I have got the notion of a function of two variables, I want to
move around the plane and ask how the function changes. But now I have
an infinite number of options. I can move along x, I can move along y, I
can move at some intermediate angle. Consider derivatives along the two
principal directions x and y. We’re going to define a partial derivative as
follows. You start at the point (x,y), go to the point (x + x,y), subtract
the function at the starting point, divide by x, and take x → 0. This
defines the partial derivative with respect to x:

∂ f

∂x
= lim

x→0

f (x +x,y)− f (x,y)

x
. (6.10)

The curly ∂ instead of d tells you it’s the partial derivative. As you move
horizontally, you notice you don’t do anything to y. We could make it very
explicit by using a subscript y as follows:

∂ f

∂x


y
= lim

x→0

f (x +x,y)− f (x,y)

x
. (6.11)
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Conservation of Energy in d = 2 85

We will not do that: if one coordinate is being varied, all the others (of
which there is just one in d = 2) will be assumed fixed. In the same notation

∂ f

∂y


x
≡ ∂ f

∂y
= lim

y→0

f (x,y +y)− f (x,y)

y
. (6.12)

Let’s get some practice with f = x3y2. To find ∂ f
∂x we see how f varies

with x keeping y constant. That means we treat y like a number such as 5
when we encounter it. So we have

∂ f

∂x


y
= 3x2y2 (6.13)

∂ f

∂y


x
= 2x3y. (6.14)

We know from the calculus of one variable that you can take the derivative
of the derivative. Here are the four possible second derivatives and their
explicit values for f = x3y2:

∂

∂x


∂ f

∂x


≡ ∂2f

∂x2
= 6xy2 (6.15)

∂

∂y


∂ f

∂y


≡ ∂2f

∂y2
= 2x3 (6.16)

∂

∂x


∂ f

∂y


≡ ∂2f

∂x∂y
= 6x2y (6.17)

∂

∂y


∂ f

∂x


≡ ∂2f

∂y∂x
= 6x2y. (6.18)

Notice that the mixed or cross derivatives are equal:

∂2f

∂y∂x
= ∂2f

∂x∂y
. (6.19)
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86 Conservation of Energy in d = 2

That’s a property of the generic functions that we will encounter. I’d
like to give you a feeling for why that is true. For what follows, bear in mind
that when you make a small displacement in the plane, the change in any
function is approximately

f  ∂ f

∂x
x + ∂ f

∂y
y, (6.20)

which becomes an equality in the limit x → 0, y → 0, and f → 0:

df = ∂ f

∂x
dx + ∂ f

∂y
dy. (6.21)

These limits appear naturally when we plan to sum over the infinitesimal
changes to get the corresponding integrals.

Armed with this, let us ask how much the function changes when we
go from some point (x,y) to (x + dx,y + dy) in Figure 6.2. We’re going to

Figure 6.2 Two ways to go from (x,y) to (x + dx,y + dy): move horizontally

and then vertically or vice versa. That the change in f must be the same both

ways becomes the requirement that ∂2f
∂y∂x = ∂2f

∂x∂y .
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Conservation of Energy in d = 2 87

make the move in two stages. We go via an intermediate point (x + dx,y)

and add the changes df1 and df2 in each step:

df1 = ∂ f

∂x


(x,y)

dx (6.22)

df2 = ∂ f

∂y


(x+dx,y)

dy (6.23)

df = ∂ f

∂x


(x,y)

dx + ∂ f

∂y


(x+dx,y)

dy. (6.24)

Notice that the second step requires the y partial derivative at (x + dx,y).
Because the partial derivative is itself just another function of x and y, we
may write to leading order in dx

∂ f

∂y


(x+dx,y)

= ∂ f

∂y


(x,y)

+ ∂2f

∂x∂y
dx. (6.25)

Upon feeding this into Eqn. 6.24 we find

df = ∂ f

∂x


(x,y)

dx + ∂ f

∂y


(x,y)

dy + ∂2f

∂x∂y


(x,y)

dxdy. (6.26)

If we first moved up to (x,y + dy) and then to (x + dx,y + dy), we would
get a change in f with x and y interchanged. Equating the results from the
two ways to find the change in f between (x,y) and (x +dx,y +dy) we find

∂2f

∂x∂y


(x,y)

dxdy = ∂2f

∂y∂x


(x,y)

dydx. (6.27)

Canceling the products of the infinitesimals, we get the equality of the
mixed derivatives.
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88 Conservation of Energy in d = 2

6.3 Work done in d = 2 and the dot product

Let us come back to deriving the law of conservation of energy in two
dimensions. In one dimension we found that if K = 1

2 mv2,

dK

dt
= mv

dv

dt
= mva = Fv = F

dx

dt
(6.28)

dK = Fdx upon canceling dt above (6.29)

K2 − K1 =
 x2

x1

F(x)dx upon integrating both (6.30)
sides above

= U (x1)− U (x2), which can be (6.31)
rearranged to give

K2 + U2 = K1 + U1 (6.32)

provided F did not depend on anything else besides x, such as v(x).
We want to try the same thing in two dimensions. What expression

should I use for the work done in two dimensions, given that the force and
displacement are both vectors with two components each? How should I
multiply all these parts in generalizing dW = Fdx? Here is the solution.
I’m going to find dK

dt for a body moving in two dimensions and call that

the power P = dW
dt just as in d = 1. For that I need a formula for kinetic

energy. The obvious choice that reduces to what we know is correct for
motion along just x or y is

K = 1

2
mv2 = 1

2
m(v2

x + v2
y ). (6.33)

Now we find

dK

dt
= m


vx

dvx

dt
+ vy

dvy

dt


(6.34)

= Fxvx + Fyvy = Fx
dx

dt
+ Fy

dy

dt
(6.35)

dK = Fxdx + Fydy (6.36)

where I have used Newton’s second law F = m dv
dt and multiplied both sides

of Eqn. 6.35 by dt , which is allowed in the sense explained earlier. If I define

Shankar, R.. Fundamentals of Physics I : Mechanics, Relativity, and Thermodynamics, Yale University Press, 2019.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/fsu/detail.action?docID=5844755.
Created from fsu on 2025-09-19 16:54:34.

C
o

py
rig

ht
 ©

 2
01

9.
 Y

al
e

 U
ni

ve
rs

ity
 P

re
ss

. 
A

ll 
ri

gh
ts

 r
e

se
rv

ed
.



Conservation of Energy in d = 2 89

the work done as

dW = Fxdx + Fydy, (6.37)

I find, just as in d = 1, that

dK = dW = Fxdx + Fydy. (6.38)

The force and displacement are both vectors

F = iFx + jFy (6.39)

dr = idx + jdy (6.40)

and their components enter dW in the combination dW = Fxdx + Fydy.
Likewise the power P may be written as

P = dK

dt
= Fxvx + Fyvy . (6.41)

Given two vectors

A = iAx + jAy (6.42)

B = iBx + jBy , (6.43)

we see that the combination AxBx + AyBy appears very naturally. It has a
name: the dot product of A and B, denoted by A · B. That is, by definition,

A · B = AxBx + AyBy . (6.44)

In this notation

dW = F · dr (6.45)

P = F · v. (6.46)

A few factoids about A · B. First

A · A = A2
x + A2

y = A2 (6.47)
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90 Conservation of Energy in d = 2

where A is the length of A.
Next if θA and θB are the angles A and B make with the x-axis, then

A · B = AxBx + AyBy (6.48)

= A cosθAB cosθB + A sinθAB sinθB (6.49)

= AB [cosθA cosθB + sinθA sinθB] (6.50)

= AB cos[θB − θA] = AB cos[θA − θB] , (6.51)

which is usually written more compactly as

A · B = AB cosθ , (6.52)

where it is understood θ is the angle between the vectors. It can be mea-
sured from A to B or the other way since cosθ is unaffected by a sign
change in θ .

Equation 6.52 works even in d = 3 because A and B can still be made
to lie in a plane and θ defined as the angle between them in this plane.
However, in terms of components we must bring in all three components:

A · B = AxBx + AyBy + AzBz , (6.53)

a result that seems reasonable and one which can be verified after some
messy trigonometry.

The dot product is symmetric since cosθ = cos(−θ):

A · B = B · A. (6.54)

Note that if we set A = B, then A · A = AA cos0 = A2.
The two definitions of the dot product, Eqns. 6.44 and 6.52, are fully

equivalent. If you are thinking in terms of the components, AxBx +AyBy is
more natural, while if you are thinking in terms of arrows of some lengths
and angles, AB cosθ is preferred. Which one you use depends on your
goals.

For example, to establish an important property that the dot product
is distributive:

A · (B + C) = A · B + A · C (6.55)
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Conservation of Energy in d = 2 91

it is easier to proceed as follows

A · (B + C) = Ax(Bx + Cx)+ Ay(By + Cy) (6.56)

= AxBx + AyBy + AxCx + AyCy = A · B + A · C.

(6.57)

On the other hand, using A · B = AB cosθ , it is easier to establish the
following very useful results:

• If A and B are parallel, i.e., θ = 0, their dot product is a maximum.
• If A and B are perpendicular, their dot product is zero.
• Under a rotation of axes, A · B is invariant or unchanged, because the

lengths and the relative angle are unchanged by a rotation of axes.

Of course, for every proof with one definition, a possibly more cumber-
some one, which uses the other definition, also exists.

Let us return to the work-energy theorem using the dot product
notation:

dK = F · dr = dW . (6.58)

The work done by a force when it moves a body by a vector dr is the length
of the force vector times the distance traveled, times the cosine of the an-
gle between the force vector and the displacement vector. That is also the
change in kinetic energy dK . Let us make a big trip in the x − y plane,
shown in Figure 6.3, starting from a point r1 ≡ 1 and ending at r2 ≡ 2, and
made up of a sequence of little segments dr in each one of which I calcu-
late F ·dr. When I add their contributions to the change in K and the work
done, I get, as the segments’ sizes tend to zero,

 2

1
dK = K2 − K1 =

 2

1
F · dr. (6.59)

The right-hand side is called the line integral of the force F between 1 and 2
along a path P.
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92 Conservation of Energy in d = 2

Figure 6.3 The line integral of a force between points 1 and 2 along a path P1 is

the sum of dot products F · dr over tiny segments that make up the path, in the

limit dr → 0. Also shown by a dotted line is another path P2 between the same

end points.

6.4 Conservative and non-conservative forces

Suppose it is true, just like in one dimension, that the line integral of the
force is something that depends only on the end points. Let us call the
answer U (1)−U (2), just like we did in one dimension. I am done, because
then I have

K2 + U2 = K1 + U1. (6.60)

To make sure this is correct, I ask the mathematicians a question: “You told
me the integral of F(x) from start to finish is really the difference of another
function G at the upper limit minus G at the lower limit, with G related to
F by F = dG

dx . Is there a similar result in d = 2?” Sadly, this is not the case.
What could go wrong? Yes, friction will do it, but let us assume there is no
friction, and that F depends only on r. Can something still be wrong? Well,
let me ask you the following question. Suppose I go from 1 to 2 along path
P1 and another person goes along path P2. Do you think that person will
do the same amount of work, even though the force is now integrated on
a longer path? In two dimensions, there are thousands of ways to go from
one point to another point. Therefore, this integral is not specified by just
the end points; it depends on the entire path, which needs to be specified.
If the work done depends on the path, then the answer cannot be of the
form U (1)− U (2), which depends only on the end points.

I digress to point out that even in d = 1, there are many ways to
go from x1 to x2 > x1. For example, we can go directly to x2 or we can
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Conservation of Energy in d = 2 93

overshoot to x3 and swing back to x2. The answer will be the same, be-
cause for every segment from x2 to x3 that makes a contribution F(x)dx,
an equal and opposite contribution exists on the way back to x2, because
F(x) remains the same, and dx changes sign. In this sense, every force F(x)

in d = 1 is conservative. Of course, if it is friction we are talking about, the
two canceling pieces now add, because F = F(x,v(x)) reverses sign along
with dx.

Returning to d = 2, I am going to show that the work done by a
generic force will be path-dependent. To generate a random force, I asked
my class to give me numbers from 1 to 3, and I got the following list: 2, 2,
2, 1, 1, and 2. Using these randomly generated numbers as coefficients and
exponents, I wrote down a force:

F(x,y) = i2x2y2 + jxy2. (6.61)

For example, the 2x2y2 is from the first three 2’s chosen by the class.
Is it true for this generic force, essentially picked out of a hat, that the

work done in going from one point to another depends only on the end
points, or does it depend in detail on how you go between the end points?
We will find that the work done along two paths, joining the same two end
points, will give two different answers.

Let’s find the work done in moving from the origin, (0,0), to the
point (1,1). I will take the two paths shown in Figure 6.4. In one path I go
horizontally until I’m at (1,0), below the point (1,1), and then straight up
to (1,1). In the other path, I’m going straight up to (0,1) and then on hor-
izontally to (1,1). So, let’s find the work done when I go the first way. I’m

Figure 6.4 The line integral of a vector from (0,0) to (1,1) along two paths.
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94 Conservation of Energy in d = 2

going to integrate F ·dr first on the horizontal segment, then on the vertical
segment. On the x-axis if I move a little bit I have

dr = idx (6.62)

F(x,y) = i2x2y2 + jxy2 = 0 because y = 0 on the x-axis (6.63)

F · dr = 0. (6.64)

In other words, the work done in this segment is zero because F itself
vanishes when y = 0. In the vertical segment from (1,0) to (1,1),

dr = jdy (6.65)

F(x,y) = i2x2y2 + jxy2 = i2y2 + jy2

because x = 1 on this segment (6.66)

F · dr = y2dy (6.67)


F · dr =
 1

0
y2dy = 1

3
. (6.68)

So the work done on this path is W1 = 0 + 1
3 = 1

3 .
On the second path, we have no contribution from the vertical seg-

ment because F = 0 for x = 0. In the horizontal segment at y = 1, we
have

dr = idx (6.69)

F(x,y) = i2x2y2 + jxy2 = i2x2 + jx

because y = 1 on this segment (6.70)

F · dr = 2x2dx (6.71)


F · dr =
 1

0
2x2dx = 2

3
. (6.72)

So the work done on this path is W2 = 0 + 2
3 = 2

3 .
The answer is path-dependent.
I have shown you that if we took a random force, the work done is

dependent on the path. For this non-conservative force, you cannot define
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Conservation of Energy in d = 2 95

a potential energy, whereas in one dimension any force other than friction
allowed you to define a potential energy.

Our quest for a conserved energy leads us to search for a conser-
vative force, a force for which the work done in going from 1 to 2 is
path-independent.

6.5 Conservative forces

At first sight a conservative force looks miraculous. A randomly generated
force was seen to have a line integral that depended on the path. How can
the path dependence ever go away? Do conservative forces exist, and, if yes,
how are we to find them?

Do not despair. Here is an algorithm that will produce any number
of conservative forces.

• Take any function U (x,y).
• The corresponding conservative force is

F = −i
∂U

∂x
− j

∂U

∂y
. (6.73)

• The potential energy associated with this conservative force will be U
itself.

Here is an example.

U (x,y) = xy3 (6.74)

∂U

∂x
= y3 (6.75)

∂U

∂y
= 3xy2 (6.76)

F = −iy3 − j3xy2. (6.77)

Let me prove to you that the recipe works. The change in the function
U , due to a small deviation from (x,y) to (x + dx,y + dy), is

dU = ∂U

∂x
dx + ∂U

∂y
dy (6.78)
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96 Conservation of Energy in d = 2

in the limit as all changes go to zero. Writing this in terms of F

dU = −Fxdx − Fydy = −F · dr. (6.79)

Adding all the little pieces and changing the sign of both sides, we get

U (1)− U (2) =
 2

1
F · dr = K2 − K1, (6.80)

which is the law of conservation of energy with U as the potential energy.
So I cooked up a force such that F ·dr was a change in a certain func-

tion U . If I add all the F · dr’s, I’m going to get the change in the function
U from start to finish. We are beginning to see why certain integrals do
not depend on the path. Here is an analogy. Forget about integrals. Imag-
ine I am on some hilly terrain. I start at one point, and I walk to another
point. At every portion of my walk, I keep track of my change in altitude,
with uphill as positive and downhill as negative. That is like my dU . I add
them all up. The total height change will be the difference in the heights
of the end points. Now, you start with me but go on a different path. You
wander all over the place but finally stop where I stopped. If you kept track
of how long you walked, it won’t be the same as my walk. But if you also
kept track of how many feet you climbed at each step and added them all
up, you would get the same answer I got. I repeat: if what you were keep-
ing track of was the height change in a function, then the sum of all the
height changes will simply be the height at the end minus the height at the
beginning, independent of the path. Conversely, starting with the height
function, if you manufacture a force F whose components are its partial
derivatives, F · dr will measure the height change in each segment, and
the line integral will yield the total height change between start and finish,
independent of the path.

Consider the line integral of a conservative force on a closed loop,
that is, when the starting and ending points 1 and 2 in Figure 6.3 coincide.
Because this represents the change in U between some point and the same
point, it vanishes for any loop. This is expressed as follows:


F · dr = 0 if F is conservative. (6.81)
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Conservation of Energy in d = 2 97

Are there other ways to manufacture the conservative force? No! One
can show that every conservative force can be obtained by differentiating
some corresponding U .

Remember how I went out on a limb with the randomly chosen force
the class generated and promised I was going to do the integral along two
paths and get two different answers? What if the force had been a conser-
vative force? Then I would have been embarrassed, because I would find,
after all the work, that both paths gave the same answer. So, I had to make
sure right away that the force was not conservative. How could I tell? I
asked myself, “Could there be some function U (the negative of) whose x
and y derivatives could equal i2x2y2 + jxy2?” I knew the answer was No
because if I took a y derivative of such a U to get Fy , then Fy should have
one less power of y than Fx , but in our example the powers of y were the
same in both. I will describe shortly a better way to analyze this question.

While it is true that even one example of path dependence (as illus-
trated above) is enough to show a force is non-conservative, getting the
same answer on two or even two thousand paths between any number of
fixed end points does not mean the force is conservative. It could be ac-
cidental. Some other path or some other end points may show the force
is non-conservative. Conversely it could happen that a non-conservative
force, like the one I just worked with, has the same integral for two partic-
ular paths joining two particular end points by pure accident. I took that
gamble and lucked out.

But if the force is really conservative, how are we to show that? Here
is the wonderful test I promised. If F is conservative, it must come from a
U by taking partial derivatives, as per Eqn. 6.73. It follows that

∂Fx

∂y
= − ∂2U

∂y∂x
(6.82)

∂Fy

∂x
= − ∂2U

∂x∂y
which means (6.83)

∂Fx

∂y
= ∂Fy

∂x
because the cross derivatives are equal. (6.84)

If I give you a force and ask you, “Is it conservative?” you simply see if

∂Fx

∂y
= ∂Fy

∂x
. (6.85)
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98 Conservation of Energy in d = 2

If it is, you know the force is conservative; if not, it is not.
The example we considered,

F(x,y) = i2x2y2 + jxy2, (6.86)

fails the test:

∂Fx

∂y
= 4x2y = ∂Fy

∂x
= y2. (6.87)

The two most ubiquitous forces, gravitational and electrostatic, are
conservative.

For longer discussion of this topic that fills in many blanks, see my
Basic Training in Mathematics.

6.6 Application to gravitational potential energy

Let’s take the most popular example: the force of gravity near the surface of
the earth given by Fg = −jmg ≡ mg where g = −jg . It is conservative be-
cause the x derivative of Fy vanishes, and there is no Fx to differentiate, so

that ∂Fx
∂y = ∂Fy

∂x = 0. What is the potential U that led to this? You can easily

guess that U = mgy will obey Fy = − ∂U
∂y . You can also have U = mgy +96,

but we will not add those constants. In the law of conservation of energy,
K1 + U1 = K2 + U2, adding a 96 to the U on both sides doesn’t do any-
thing. You already knew this from our study of motion in one dimension,
and I am pointing out that this is also true in two dimensions.

Consider an application. Figure 6.5 shows a roller-coaster track that
has a wiggly shape. At every x, there’s a certain height y(x) and a potential
energy U (x) = mgy(x), which is essentially just the profile of the roller-
coaster track. If a coaster begins at rest at point A at the top, what is its
total energy? It has a potential energy given by the height h, it has no ki-
netic energy, and so the total energy is just E1 = mgh. But the total energy
cannot change as the coaster goes up and down. So, you draw a line at
height E1 to represent this total energy. If the coaster is at some point x,
then U1(x) is its potential energy and the rest of E1 is its kinetic energy
K1(x) as shown. As it oscillates up and down during its ride, the coaster
gains and loses kinetic and potential energies, which always add up to the
same E1.
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Conservation of Energy in d = 2 99

Figure 6.5 The roller-coaster ride. The total energy is fixed at E1 or E2 in the

two examples discussed. At every point x, the sum of the potential energy U (x)

and the kinetic energy K(x) equals a constant E. If the energy is E2, the coaster

can only be found between B and C or to the right of D. It is disallowed in the

region CD where the potential energy exceeds the total energy, and K would have

to be negative.

Consider a roller coaster whose total energy is E2. We release it from
rest at point B. It’ll come down, pick up speed, slow down, stop, and turn
around at C, because, at that point, the potential energy is equal to the total
energy and there is no room for any kinetic energy. It’ll rattle back and
forth between B and C. If we release it from rest at D, it will have the same
energy E2, and it will coast down to the end of the ride. But it can never go
from C to D because in the region CD it would have more potential energy
than total energy, and hence negative kinetic energy, which is impossible.

However, according to laws of quantum mechanics, a particle with
energy E2 can disappear from the region BC and tunnel to D with the same
energy. I use the word tunnel because in classical mechanics, the particle
cannot cross the potential energy barrier in the interval CD. In quantum
theory you cannot raise this objection because particles do not move along
continuous, interpolating trajectories between two observed locations.

Back to the coaster: We can use energy conservation to find the speed
at any point along the track. We can use it to determine the minimum
height H from which the coaster in Figure 4.6 must be released so as to
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100 Conservation of Energy in d = 2

reach the top of the loop (at a height 2R measured from the ground) at the
minimum requisite speed of v = √

Rg . We write

1

2
m · 02 + mgH = 1

2
mRg + mg(2R) (6.88)

H = 5

2
R. (6.89)

A final note. The law of conservation of energy for the coaster as I
stated it is incomplete, because gravity is not the only force acting. There
is FT , the normal force of the track. Look, if I didn’t want to have any force
but gravity, I could take this roller coaster and just push it over the edge of a
cliff. That converts potential to kinetic energy, but the outcome is not going
to be good for the riders. Park designers build a track because they want
the customers to survive the ride and come back for more. So the track
should exist, and the consequent FT should be included in computing the
work. Luckily, this normal force does no work, because FT ·dr = 0 in every
portion. So the correct thing to do would be to say K2 − K1 is the integral
of all the forces, divide them into FT due to the track and Fg due to gravity,
and drop FT for the reason mentioned.
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