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Abstract

The Navier-Stokes equation, which is the central equation of fluid dynamics, is seldom
though at the undergraduate level, let alone in an introductory physics class. As a conse-
quence, actual fluid dynamics at the professional level looks nothing like the introductory
physics fluid dynamics, and the students do not get a taste of what the discipline is all
about and whether they would like to pursue it. This manuscript is an attempt to derive the
Navier-Stokes equation, and the wave equation for sound waves, at the level of a Calculus
base introductory physics class.

The way to mathematically analyze a fluid is by considering a differential volume-element,
or a parcel (see Fig. 1), and considering the forces acting on this parcel. First, I will recount
how this method gives us the pressure equation for a liquid at equilibrium in a gravitational
field (Fluid Statics); later, I will derive the Navier-Stokes equation with similar considerations.

1 Fluid Statics
Consider Figure 1. This represents a differential fluid element, or parcel, in the form of a cube
with sides dx, dy, and dz. Such that the volume if given by dV = dxdydz. In a static situation,
this cube does not move. This means that the pressure—which is a product of the particles in
the fluid colliding with the walls on the cube due to their random (thermal) motion—cancels
out the effects of gravity. Gravity’s nature is to bring the fluid parcel downwards (towards the
center of the Earth), so the net force due to pressure must be upward. We hence have, from
Newton’s second law:

Fztotal = −mparcelg +∆zP ∗ dxdy = 0 (1)
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Figure 1: A (zoomed-in) differential volume element (or parcel) on a static fluid. For the fluid
to be in static equilibrium, an upward force, produced by the pressure of the surrounding fluid
on the parce, must balance the weigth of the parcel

where g is the gravitational acceleration, P is the pressure, and ∆y represents the change in
pressure between the top and bottom faces of the cube. In a fluid, pressure exerts a net force on a
fluid parcel when there is a pressure difference between opposite faces. The change in pressure
along a length dz (from one face to the other) is given by the derivative of the pressure in the
z-direction, times the length dz. To see this, consider that the pressure in the bottom face is P0,
then by a first-order Taylor expansion, the pressure in the top face will be P0 +

dP
dz
dz. Here,

we are assuming the pressure to vary linearly within the cube, which is a good approximation
given that the cube is infinitesimal. ∆yP is then given by the difference in these two pressures:

∆zP = Pbottom − Ptop = P0 − (P0 +
dP

dz
dz) = −dP

dz
dz
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3 2 FLUID DYNAMICS: THE NAVIER-STOKES EQUATION

Eqn. 1 then becomes:

Fztotal = −mparcelg −
dP

dz
dzdxdy = 0 (2)

Dividing by the differential volume dV and recognizing that mparcel

dV
= ρ (where ρ is the

density of the fluid) we find that

dP

dz
= −ρg (3)

If we consider an ambient pressure Patm over a liquid, we might want to know how the
pressure will change when descending a depth −d into the fluid (the negative is because the
displacement is downwards). Integrating this equation we find that∫ P

Patm

P ′ = −
∫ −d

0

ρgdz

P = Patm + ρgd (4)

This is how the pressure increases as we dive further into the sea or a pool of water.

2 Fluid Dynamics: The Navier-Stokes Equation
This is similar to what we did when doing fluid statics: we derived the pressure-depth relation-
ship by considering a fluid parcel in equilibrium in a fluid container. Now the parcel can have
a net velocity and acceleration, so the analysis gets more involved, but we still use the same
methodology as in fluid statics.

Consider the volume element in Fig. 2. What are the forces in the volume-element? These
will be due to the neighboring particles (neglecting gravity for now). There are two types of
forces neighboring particles will exert on the fluid parcel. One is collisional. The particles
will collide with the faces of the cube and exert a pressure on the cube, pushing in on the
walls of the cube. Pressure captures the forces due to the collisions given the random (thermal)
motions of the fluid. Like the case of electrostatic, the net influence of pressure depends on
how its difference between the faces of the cube. While in the electrostatic case there was only
a pressure difference in the vertical z-axis (because this difference was balancing gravity’s
influence), now there can be a pressure difference in the x, and y-axis as well. Hence:

FPx = ∆xP = (−∂P
∂x

dx)dydz (5)

FPy = ∆yP = (−∂P
∂y

dy)dxdz (6)
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Figure 2: A differential volume-element in a flow. Each face of the cube is labeled with a
number. The face normal to the x-axis is 1, to the y-axis is 2, and to the z-axis is 3. The
opposite faces will be refered to as -1, -2, and -3, respectively.

FPz = ∆zP = (−∂P
∂z

dz)dxdy (7)

where we have multiplied by the area of each face (dydz, dxdz, and dxdy, respectively) to
obtain the net force on those faces (recall that force in pressure times the area). The negative
sign comes about because, when the pressure increases in one direction, the net force will be
opposite to this direction (as the higher-pressure side will be pushed opposite to this pressure
increase).

The second force is attractive and related to drag or viscosity. Inter-molecular forces want
to stick fluid particles together, so if a fluid molecule passes by another one, this will feel an
attractive force towards the passing particle. This effect is called viscous shear.
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5 2 FLUID DYNAMICS: THE NAVIER-STOKES EQUATION

Consider, for instance, face 2 of the cube. There are four possible interactions with the sur-
rounding particles that will produce a force on this wall, which are shown in Fig. 3. The cyan,
magenta and green particles are passing by the wall and exerting an attractive inter-molecular
force that is represented as a viscous drag. Let’s consider the force due to the magenta particle.
A net force on the cube due to magenta particles (particle flowing in the +y direction) will only
exist if the magenta particles are changing their velocity with respect to the parcel. If they are
at the same velocity, then no drag will be experienced (the way this inter-molecular attraction
works, is that the parcel’s fluid particle only wants to follow the particles that pass by them).
To compure the force on face 2 (FM2), we first compute what the force would be in the center
of the parcel. The force due to magenta particles at the center (F0) depends on the difference
in the y velocity of the fluid (over a small distance δy close to the center) with respect to the
velocity of the parcel (referred to as vy(0))

FM0 = ν(
vy − vy(0)

δy
)dxdz → ν

∂v

∂y
dxdz (8)

where ν is a constant of proportionality called the viscosity, which is related to the strength of
the attractive inter-molecular forces. The force on face 2 would then be given by extrapolating
(via a Taylor expansion) a distace dy

2
:

FM2+ = ν(
∂vy
∂y

∣∣∣∣
0

+
∂2vy
∂y2

dy

2
)dxdz (9)

Even if this difference in velocity exists, that is not enough to warrant that the magenta particles
will exert a net force on the cubic parcel. If the same force FM2+ is being applied in the
opposite face, the parcel will not experience a drag. This is because for a fluid parcel, what
matters is a difference between the velocity of the magenta particle in face 2 versus it’s opposite
face. If both faces have the same pressure (force per area), the cube will not accelerate. In
general, the acceleration of the fluid parcel is dictated by the difference in pressure between
two opposite faces of the parcel. Note that to find the force on the opposite face (FM2−) we
extrapolate the force in FM0 a distance −dy

2
to the -2 face.

FM2− = ν[
∂vy
∂y

∣∣∣∣
0

+
∂2vy
∂y2

(
−dy
2

)]dxdz

Hence, the force due to the magenta particles interacting with face 2 and its opposite will
be given by this difference:

FM2 = FM2+ − FM2− = ν[

change of this difference between the two parallel faces of the cube︷ ︸︸ ︷
parcel’s and particle’s velocity difference︷ ︸︸ ︷

(
∂vy
∂y

∣∣∣∣
0

+
∂2vy
∂y2

dy

2
) −(

∂vy
∂y

∣∣∣∣
0

+
∂2vy
∂y2

(−dy)
2

)] dxdz (10)
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Figure 3: The four types of interaction that neighboring fluid particles can have on face 2 (or
any other face) of the fluid parcel. The Cyan, magenta, and green particles exert viscous inter-
molecular forces that, given that this interaction is not the exact same on the opposite face, will
cause a net acceleration in their direction of motion. Meanwhile, the blue force collides with
face 2 exerting a pressure

where, again, ν is the viscosity coefficient of the fluid (which depends on the streght of this
inter-molecular flow) and where the terms (vy(0)± ν ∂vy

∂y
|0 dy2 ) represent the change in velocity

between the cube and the magenta particles on both faces of cube. It is the difference between
this change (hence, the second derivative) that matters. ν relates the pressure on the faces of
the parcel to the shear, so, to obtain the force, we have to multiply by the area of the face dxdz
(recall that force is pressure times the area). Simplifying this equation, we get:

FM2 = ν
∂2vy
∂y2

dydxdz (11)
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7 2 FLUID DYNAMICS: THE NAVIER-STOKES EQUATION

Now, consider the forces exerted by the green (cyan) particle on face 2. The particle flows
upwards, so the viscous (attractive intermolecular force) will be upwards. But this force will
only exist if there is a difference in velocity between face 2 and the green particle, and if this
difference itself changes between face 2 and its opposite face. So we are left with the force:

FG2 = ν[

change of this difference between the two parallel faces of the cube︷ ︸︸ ︷
parcel’s and particle’s velocity difference︷ ︸︸ ︷

(
∂vz
∂y

∣∣∣∣
0

+
∂2vz
∂y2

dy

2
) −(

∂vz
∂y

∣∣∣∣
0

+
∂2vz
∂y2

(−dz)
2

)] dxdz (12)

This again simplifies to:

FG2 = ν
∂2vz
∂y2

dydxdz (13)

Unsuprisingly, by the same argument, the net force due to the cyan particles acting on face
2 and its opposite ends up being:

FC2 = ν
∂2vx
∂y2

dydxdz (14)

Note that the direction of the force due to the shear is the same as the direction of motion
of the particles. Magenta particles create a force in the y-direction, cyan in the x, and green in
the z. While we considered only the forces in face 2, and its opposite, the net force on the cube
will be a consequence of adding all the forces on all the faces of the cube. Magenta particles,
as they “slide” on faces 1 and 3, will also produce a force in the y. Conversely, for the green
and magenta particles. The net force on the y direction will be given by:

Fnety = −

difference in pressure︷ ︸︸ ︷
∂P

∂y
dV +

cyan particles on face 2︷ ︸︸ ︷
ν(
∂2vy
∂y2

dV +

cyan particles on face 1︷ ︸︸ ︷
∂2vy
∂x2

dV +

cyan particles on face 3︷ ︸︸ ︷
∂2vy
∂z2

dV ) =
∂

∂t
(mparcelvy)

(15)
where we have equated the net force in the y to the net change in momemtum in the y (this is
Newton’s 2nd Law). Dividing the right-hand side by dV (the fluid parcel volume):

∂

∂t
(
mparcel

dV
vy) = −∂P

∂y
+ ν(

∂2vy
∂y2

+
∂2vy
∂x2

+
∂2vy
∂z2

) (16)

and recognizing that mparcel

dV
in the density ρ of the fluid, we get the y component of the Navier-

Stoke equation.

ρ
∂vy
∂t

= −∂P
∂y

+ ν(
∂2vy
∂y2

+
∂2vy
∂x2

+
∂2vy
∂z2

) (17)
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8 3 THE FICTITIOUS FORCE

where by taking the the density of the fluid ρ out of the partial derivative in the left-hand
side of the equation we are taking the density to never change with time. This is true for
incrompressible fluids, like water. We will relax this assumption when dealing with air and
sound waves, as air is compressible. This equation, however, is a very powerful and general
tool to describe the behaviors of water, which is incompressible, and no matter the velocity, the
density is always ρH2O = 1000kg/m3.

3 The fictitious force
A final caveat, however, before we write all the components of the Navier-Stokes equation.
Care must be taken when considering the acceleration of the fluid parcel dvy

dt
. This acceleration

is an acceleration with respect to the frame shown in Fig. 4, which is a frame that “rides” with
the fluid parcel itself, keeping itself at the center of the parcel always. This means that this
frame is not necessarily an inertial frame. In general, when the frame is not inertial, Newton’s
second law can be written as:

F −maframe = ma (18)

where −maframe is a fictitious force that arises due to the non-inertial effects of the frame. The
final step in our derivation will hence be to add to Equation 17 a fictitious force term −maframey ,
the y-component of this fictitious force. We compute aframey by considering that all the frame
is doing, to keep itself on top of the fluid particle, is following the flow of the fluid v. Consider
that at a time intercal dt, the frame moves a distance ds along the direction of the flow. What
is the change of the vy when moving along this flow a distance ds? This is given by:

aframeydt =
∂vy
ds

ds (19)

To obtain the rate of this change on a time interval dt, we devide both sides by dt and find
that:

aframey =
∂vy
ds

ds

dt

where ds
dt

is the speed of the flow |v| and the derivative d
ds

is a derivative in the direction of
the velocity flow. Normally derivatives are taken in the x, y or , direction, but one can take a
derivative in any direction via the directional derivative. This is defined as:

d

ds
= (

∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂) · v

|v|
where v

|v| yields the unit vector in the direction of the flow. Substituting this into the expression
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z

y

x ds

Figure 4: In a time interval dt the frame that follows the fluid parcel travels a differential length
ds in the direction of the flow. This will create non-inertial effect on the motions described with
respect to this frame. These effects are accounted for by addid a fictitious force.

∂vy
ds

ds
dt

we get

∂vy
ds

ds

dt
= (

∂vy
∂x

vx+
∂vy
∂y

vy +
∂vy
∂z

vz)
�
�
�
��
1

ds
dt
ds
dt

where we have used the fact that |v| = ds
dt

So finally, we correct for the fact of a non-inertial
frame by adding the term

−ρaframey = −ρ(∂vy
∂x

vx +
∂vy
∂y

vy +
∂vy
∂z

vz)

to the right-hand side of Eqn. 17.
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10 4 A STEADY-STATE ONE DIMENSIONAL FLOW

ρ
dvy
dt

= −∂P
∂y

+ ν(
∂2vy
∂y2

+
∂2vx
∂x2

+
∂2vz
∂z2

)− ρ[
∂vy
∂x

vx +
∂vy
∂y

vy +
∂vy
∂z

)vz] (20)

Again, this final term, in the square brakets, is a ficticios force (like the centrifugal force)
that arrise because we considered a non-inertial frame which follows the fluid parcel around
the flow. The x, and z components of the Navier-Stokes equations are similarly written as:

ρ
dvz
dt

= −∂P
∂z

+ ν(
∂2vz
∂y2

+
∂2vz
∂x2

+
∂2vz
∂z2

)− ρ[
∂vz
∂x

vx +
∂vz
∂y

vy +
∂vz
∂z

vz] (21)

ρ
dvx
dt

= −∂P
∂x

+ ν(
∂2vx
∂y2

+
∂2vx
∂x2

+
∂2vx
∂z2

)− ρ[
∂vx
∂x

vx +
∂vx
∂y

vy +
∂vx
∂z

vz] (22)

Now we will simplify this equation by considering a steady-state two-dimensional flow,
and finally simplify the equation further by considering a fluid with no viscosity (ν = 0).

4 A steady-state one dimensional flow
In physics, “steady-state” refer to a set of equations that do not change in time. A steady-state
of a fluid is similar to the notion of static equilibrium in mechanics: the acceleration in all
directions is zero. Moreover, when a fluid’s velocity only has component (vy) and the flow
velocity only changes in a direction perpendicular to this flow (the z direction) we have a one
dimenssional flow. Note that this not mean the fluid itself does to extend in three dimensions,
rather, it means the fluid only flows in two dimensions. Considering we have such a fluid, the
Navier-Stokes equations reduce to:

0 = −∂P
∂z

+ ν
∂2vz
∂z2

− ρ[
∂vz
∂z

vz] (23)

or

ρ[
∂vz
∂z

vz] = −∂P
∂z

+ ν
∂2vz
∂z2

(24)

Note that, while the acceleration with respect to the non-inertial frame may vanish, the
frame itself can be accelerated, so the fictitious force term survives. In this class, we will solve
simple problems with these equations and with the following equation, which considers a fluid
with no viscosity.
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11 5 INVICID (CONSERVATIVE) FLUIDS

5 Invicid (conservative) fluids
If the fluid has no appreciable intermolecular forces (like a noble gas), we may consider it to
be invicid; that is, it’s viscosity ν = 0. In this case the viscosity terms vanish and we are left
with the equations.

ρ[
∂vz
∂y

vy +
∂vz
∂z

vz] = −∂P
∂z

(25)

ρ[
∂vy
∂y

vy +
∂vy
∂z

vz] = −∂P
∂y

(26)

These are called the Euclid equations for a two-dimensional flow. Note, however, that for
gasses, in many situations, the incompressibility assumption fails, and we must consider that ρ
can change. If ρ changes then the steady-state. An example of that lies in the next section. For
a one-dimensional invicid steady-state flow, the Navier-Stokes reduces to:

ρ
∂vz
∂z

vz = −∂P
∂z

− ρg (27)

where we have added (finally) the gravitational term ρg that acts in the negative z direction.
Using the “reverse” chain rule we can simplify the left-hand term as

ρ
∂vz
∂z

vz =
1

2
ρ
∂v2z
∂z

Now the equation can be easily integrated with respect to z:∫
ρ
∂v2z
∂z

dz = −
∫
∂P

∂z
dz −

∫
ρgdz

1

2
ρv2z = −P − ρgz + C

where C is just the constant of integration. Rearranged, this is Bernoulli equation, which
stablishes that the following quantity in a constant along the direction of a one-dimensional,
steady-state, invicid, incompressible fluid.

1

2
ρv2z + P + ρgz = C (28)

This is a statement of the conservation of energy in a fluid.
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12 6 SOUND WAVES

6 Sound Waves
Thus far, we have only dealt with incompressible fluids. While this works extremely well for
liquids, (particularly water). Gases, however, do then to be invicid (no viscosity). What follows
is a derivation of the wave equation for a compressible invicid fluid that starts at equilibrium
(at rest).

Since the fluid is by requirement initially at rest, out non-inertial term (the fictitious force)
vanishes in this case. Parting from Eqn. 23, but changing this to be in the y-axis and setting
the viscosity to zero, we get

0 = −∂P
∂y

+
�
�
��7
0

∂2vy
∂y2

−
�

�
�

�
�>
0

ρ[
∂vy
∂y

vy] (29)

Note, however, that even if there is no average fluid flow, sound waves are not in a steady
state: the wave itself means the fluid is sometimes accelerating. Hence, we must replace the 0
in the left-hand side by the acceleration term ∂ρvy

∂t
(here we need to leave ρ inside of the time

derivative because we are dealing with a compressible fluid).

∂(ρvy)

∂t
= −∂P

∂y
(30)

For the next step we must consider two things: one is the conservation of mass constrains
the change of ρ (we will see how). The other one is that thermodynamics (the ideal gas law)
yields a relation between pressure P and density ρ which we will use.

6.1 The continuity equation (conservation of mass)
The density of a compressible fluid ρ can change in time and in space. For a one dimensional
fluid, that means that it depends on the position of the fluid parcel along the y-axis, and the time
t elapsed. But density cannot decrease out of thin air, if it decreases a point y in a time interval
dt then this mass flowed with a velocity vy though an area A into this a new point y + dy. The
mass of the volume that flowed is:

Mflowed out = ρAvydt (31)

By conservation of mass, this equals the change of mass dρ of the parcel over a time dt.
Consider the volume of this parcel to be dV = Ady

Mloss = dρAdy = −∂ρ
∂t
dtAdy

By conservation of mass, these two expressions must be equal, we get:

12



13 6 SOUND WAVES

∂ρ

∂t
dtAdy = −ρAvydt

Dividing both sides by dt and dy and noticing that the areas A cancel out, we see that
conservation of mass implies that:

−∂ρ
∂t

=
∂(ρvy)

∂y
(32)

6.2 Ideal Gases
(TL;DR: In gases, pressure and density are related linearly by P = c2

γ
ρ where γ is the adia-

batic constant. The infinitesimal changes of preassure and density (dP and dρ) are related by
dP = c2dρ)

Ideal gases (which we are superficially covered by the end of the class, and it is covered
extensively in Chem 1) provide us with a relation between pressure and density, which we need
to derive the wave equation from the Navier-Stokes Equation. Normally, the idea gas law is
written as

PV = NRT

where R is Avogrado’s number, N in the total number of moles in the gas, and T in the temper-
ature. If we write it instead in terms of the total numbner of gas molecules Nm, we just need to
use the Boltzmann constant kB instead of Avogrados’ number.

PV = NmkBT

We can divide both sides by V in order to obtain a relationship between number density
(number of molecules per unit volume) and pressure

P =
Nm

V
kBT

If we multiply both sides by the mass of the air molecule (which is ussualy the mass of the N2

molecule as air on Earth is mostly hydrogen) we find that:

PMN2 =
MN2Nm

V
kBT

Note that the mass of each molecule multiplied by the total number of molecules Nm is just
the total mass of the gas. Hence, the fraction if just ρ and we find that:

P =
kBT

MN2

ρ (33)

13



14 7 DERIVATION OF THE WAVE EQUATION

For what is to come, we do not only need a relation between P and ρ, but we also need a
relation between the infinitesimal changes dP and dρ caused by a sound wave. To do this, we
apply the differential on both sides of Eqn. 33.

dP = d(
kBT

MN2

ρ)

Taking a differential is like taking a derivative so the product rule apply to the right hand
side of the equation, were both density and temperature change with preassure.

dP =
TkB
MN2

dρ+
ρkB
MN2

dT (34)

To go futher we need to relate dT to dP . This relation generally depends on the type of
process that is causing these changes. For the propagation of a wave, the pocess is adiabatic (e.i,
it happens quickly compared to the hability of the air to transfer the heat). For thermodynamic
reasons we won’t go into, adiabaticity implies that the preassure and temperaature are related
by:

P 1−γT γ = Constant

Taking the differential of this expression (d(P 1−γT γ)) we get that:

P 1−γ−1(1− γ)T γdρ+ P 1−γT γ−1γdT = 0

Dividing this by P 1−γT γ in order to simplify, and isolating dT we get:

γ − 1

γ

dP

P
T = dT

Plugging this into Eqn. 34 and simplyfying by using Eqn. 33, we finally get the relation:

dP = γ
kbT

MN2

dρ (35)

We will simplify this equation by writting γ kbT
MN2

= c2.

7 Derivation of the wave equation
We are now in position for deriving the wave equation combining Eqns. 30, 32, and 35. First,
we need to derive Eqn. 32 with respect to time (remember that ρ is a function of time so it
needs to be considered in the derivative as well).

14



15 8 A WORKED OUT EXAMPLE

−∂
2ρ

∂t2
=

︷ ︸︸ ︷
∂

∂t

∂ρvy
∂y

(36)

Now we derive Eqn. 30 with respect to y︷ ︸︸ ︷
∂

∂y

∂ρvy
∂t

= −∂
2P

∂y2
(37)

Note that the terms in the overbrace for both equations are the same: the order of derivation
(first t and then y or viceversa) does not affect the result. So we can replace the left-hand side
of Eqn. 37 simply with the term ∂2ρ

∂t2
:

−∂
2ρ

∂t2
= −∂

2P

∂y2
(38)

Finally, we replace ∂2ρ with the change in preassure ∂2P vía Eqn. 35 above in order to get
an equation of only one variable (even if these are second order partial differentials, the derived
relation between differentials still applies).

− 1

c2
∂2P

∂t2
= −∂

2P

∂y2

or
∂2P

∂y2
− 1

c2
∂2P

∂t2
= 0

Two derivatives in space minus two derivatives in time equals zero. This is the wave equa-
tion. It is the same equation we derived for waves on a string. Note that the general form of the
wave equation is:

∂2ψ

∂dt2
+

1

v2
∂2ψ

∂y2
= 0

By comparing these two last equations, we see that c = v. That is, the speed of the traveling
pressure wave (sound wave) through a gas is given by c =

√
γ kBT
MN2

8 A worked out example
Water flows through a circular tube with inside diameter 0.2 m. A smoothly con-
toured cilinder with a hemispherical end of 0.15 m diamteter is held in the end of
the tube where the water discharges to atmosphere. Neglect frictional effects and
assume uniform velocity profiles at each section. Determine the relative pressure
that the gauge will mesure (see the figure), and the force required to hold the body.

15



16 8 A WORKED OUT EXAMPLE

Figure 5: A cylindrical cap with a smooth hemispherical end is held at the end of an invicid
pipe flow.

Given that we can assume uniform motion, we regard this as a one-dimmensional flow,
where the velocity is in the x-axis. Moreover, there are no viscous forces, water is incompress-
ible, and the fluid is at a steady-state. Hence we can use Bernulli equation in the x-axis.

1

2
ρv2x + P = C (39)

Conservation of mass (Eqn. 31) implies that the volume of water that flows from the left-
hand-side of the figure in a time dt must be the same as the volume of water that flows at the
rigth-hand-side out of the pipe:

ρA1v1dt = ρA2v2dt

Then v2 is given by:

v2 =
A1

A2

∗ v1

We can compute C from Bernulli equation by considering that at the exit of the pipe, water
“exits to atmosphere” so the preassure there is the atmospheric preassure Patm.

1

2
ρ(
A1

A2

)2v21 + Patm = C

C is a constant of the motion so this will also be equal to:

1

2
ρv21 + P1 =

1

2
ρ(
A1

A2

)2v21 + Patm = C

We are looking for the relative preassure P1 − Patm, which is equal to

P1−Patm =
1

2
ρv21(

A2
1

A2
2

−1) =
ρ

2
v21(

R4

(R2 − a2)2
−1) =

1000

2
6.12∗( .14

(.12 − .0752)2
−1) = 78596.6Pa

(40)

16



17 8 A WORKED OUT EXAMPLE

where a is the radius of the hemisphere. The force required to hold the body will the same as
the differneces in pressure, times the area where the pressures are applied (πa2). The preassure
inside the pipe, however, depends in the distance x from the left-end of the circle. If we
consider a coordinate system at the center of the hemisphere, the velocity will be at a minimum
for x = −a, and will become v2 when x = 0. Consider F = ma for this object; since it is in
equilibrium Fnet = 0. It would look something like this.∫

P (x) ∗ dA− Patm ∗ A− F = 0 (41)

where A is the crossectional area of the object (so, a circle with radius a) and where the preassue
of the water balances the atmospheric preassure at the other end of the object plus the force.
We have to integrate P because P depends on r (in changes at the pipe get tighter).

For now, consider the function (Eqn 40)

P = Patm − 1

2
ρv21(

A2
1

A2
2

− 1) = Patm − 1

2
ρv21(

R4

(R2 − r2)2
− 1)

where r2 is the radius of the crossection of the cylinder. To find the force F , we must integrate
the effects of this preassure from r = 0 to r = a times the differential crossetional area of the
hemisphere, which will just the be area of a circle:

P =

∫ a

0

(Patm − ρ

2
v21(

R4

(R2 − r2)2
− 1))2πrdr

where we have replaced the differential area dA with the differential area of the circle 2πrdr.
This integral can be solved using an u-substitution of u = R2 − r2.

P = Patm − ρ

2
v21πa

2 +

∫ R2−a2

R2

πR4ρ

2
v21(

1

u2
)du

Here we only need the integral of u−2. Solving and plugging in the integration limits we get:

P = Patm + πρR4v
2
1

2
(
1

R2
− 1

R2 − a2
− a2

R4
)

Plugging this back into Eqn . 41 and solving for F we find that:

F = π1000
6.12

2
.14(

1

.12
− 1

.22 − .0.752
− .0752

.104
) = 255.582N
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